• Title/Summary/Keyword: Runner

Search Result 440, Processing Time 0.023 seconds

A Study on the Filling Imbalances between Multi-Cavity in Hot-Runner Mold (핫러너 금형에서 캐비티사이의 충전불균형 현상에 관한 연구)

  • Han S.R.;Jeong Y.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.598-601
    • /
    • 2005
  • Plastic parts are molded for the purpose of mass production in multi-cavity system. Therefore, designer is usually designing molds that has geometrically balanced runner lay-out for filling balance at each cavities. Although, mold is manufactured with geometrically balanced runner lay-out, there are actually filling imbalances in cavities. These filling imbalances phenomenon are caused by complicated interaction between melt and mold. In this study, based on previous studies for filling imbalances in cold-runner mold, filling imbalances in hot-runner mold were investigated by CAE and injection molding experiments. ABS, PMMA as amorphous polymer and PA, PP as crystalline polymer were used to compare the filling imbalances. The filling imbalances decreased as injection rate increased without regard to kind of resins and were lower than the one of cold-runner.

  • PDF

Effects of Core Pin Shape on the Filling Imbalances of PA6 Molding (러너 코어핀 형상이 PA6 성형품의 충전불균형도에 미치는 영향)

  • Jeong Y.D.;Kang C.M.;Je D.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.706-709
    • /
    • 2005
  • Despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed in multi-cavity injection mold. These filling imbalances are results from non-symmetrical shear rate distribution within melt as it flows through the runner system. It has been possible to decrease filling imbalance by optimizing processing conditions, but it has not completely eliminated this phenomenon during the injection molding processing. This paper presents a solution of these filling imbalances by using runner core pin which creates a symmetrical shear distribution within runner and the effects on filling imbalance when modifying a shape of runner core pin. As a result of using runner core pin, a remarkable improvement in reducing filling imbalance was confirmed. In addition we investigated how filling imbalances were affected by shape of runner core pin.

  • PDF

Selection of Optimal Number of Francis Runner Blades for a Sediment Laden Micro Hydropower Plant in Nepal

  • Baidar, Binaya;Chitrakar, Sailesh;Koirala, Ravi;Neopane, Hari Prasad
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.294-303
    • /
    • 2015
  • The present study is conducted to identify a better design and optimal number of Francis runner blades for sediment laden high head micro hydropower site, Tara Khola in the Baglung district of Nepal. The runner is designed with in-house code and Computational Fluid Dynamics (CFD) analysis is performed to evaluate the performance with three configurations; 11, 13 and 17 numbers of runner blades. The three sets of runners were also investigated for the sediment erosion tendency. The runner with 13 blades shows better performance at design as well as in variable discharge conditions. 96.2% efficiency is obtained from the runner with 13 blades at the design point, and the runners with 17 and 11 blades have 88.25% and 76.63% efficiencies respectively. Further, the runner with 13 blades has better manufacturability than the runner with 17 blades as it has long and highly curved blade with small gaps between the blades, but it comes with 65% more erosion tendency than in the runner with 17 blades.

On the new mold structure with multi-point gate for filling-balance mold (다점 핀포인트 금형에서 균형충전이 가능한 사출금형 구조)

  • Kwon, Youn-Suk;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.25-29
    • /
    • 2008
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalance have been observed. Filling imbalance could be decreased by modifying processing conditions such as injections rate, mold temperature, injection pressure, melt temperature that are related to shear, viscosity. In this study, a series of experiment was conducted to investigate filling imbalance variation when modifying runner layout and ploymer and to determine which processing condition influences as the primary cause of filling imbalance in geometrically balanced runner system. The filling imbalance was desreased up to result range of $3{\leq}DFI{\leq}8(%)$ by using a new runner system for balanced filling.

  • PDF

Degree of Filling Balance according to Runner Shapes in Injection Mold (사출금형의 러너시스템 형상에 따른 균형 충전도)

  • Han, Dong-Yeop;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.52-57
    • /
    • 2012
  • Aspect of filling imbalance that is originated from imbalanced share rate in runner is changed by material property, runner layout that are factors of changing viscosity and by injection pressure, injection speed, melt temperature and mold temperature that are injection conditions. In this paper, we made a study of runner system that is one of factor of filling imbalance and Sharp Conner Effect and Groove Corner Effect that are recently released. The study are showed that filling rate of between inside and outside cavity was influenced on shape of runner. Also, we suggested runner system for filling imbalance by adapting the two effects at multi cavity of unary branch type and theoretical investigated flow in the Shrap Conner runner type.

  • PDF

Development of Automatic Runner-Valve Actuator for The Filling Balance of Multi Cavity (복수 캐비리 충전 균형 조절을 위한 자동 런너 밸브 조절기 개발)

  • Lee, Y.J.;Lee, E.J.;Park, H.P.;Cha, B.S.;Rhee, B.O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.370-373
    • /
    • 2009
  • The runner-valve is an effective solution for the filling balance of the multi cavity molds. Automation of the runner-valve system is necessary for more efficient and accurate control of the filing balance. We designed an automatic runner-valve actuator for the automation and characterized the actuator by experiment. We obtained a linear relationship between motor-driving time and the height of the runner-valve. However, the motor-driving times for upward and downward directions were different due to the frictional characteristics of the actuators. Also we obtained the motor-driving times for backlashes of the 4 actuators. The results were used to formulate the relationship between the resin-arrival time and the flow rate change of the runner-valve with the theoretical equation that was derived in the previous research.

  • PDF

Hydraulic Runner Design Method for Lifetime

  • Sabourin, Michel;Thibault, Denis;Bouffard, David-Alexandre;Levesque, Martin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.301-308
    • /
    • 2010
  • Quest for reliability of hydraulic runners is a concern for all mature electricity producers. The fatigue damage caused by dynamics loads is frequently the root cause of runner failure. This paper presents the damage tolerance approach based on fracture mechanics as the method chosen by Alstom and Hydro-Qu$\acute{e}$bec to predict effects of damage on runner lifetime and consequently to be use as a design method. This is sustained by a research on fracture mechanics properties of runner materials and by recommendations on the strategy to define a safety margin for design. The acquired knowledge permits to identify potential improvement of the runner lifetime without significant cost increase, like being more specific on some chemical composition or heat treatment.

Flow Analysis of Filling Imbalance according to Runner Shapes in Injection Mold (사출금형의 러너시스템 형상에 따른 충전불균형 유동해석 모델)

  • Jang, Min-Kyu;Go, Seung-Woo;Kim, Yeong-Min;Noh, Byeong-Su;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.16-20
    • /
    • 2008
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing; However, even though geometrically balanced runner is used, filling imbalances have been observed. In these day, the CAE has been used widely in injection molding. However, CAE with fusion mesh can't indicate such as jetting, flow mark and filling imbalance in multi cavity mold. In this study, we investigated the filling imbalance according to runner shapes by CAE analysis. As a result in CAE, in case of binary branch runner system, filling imbalance was indicated between cavity to cavity, but the flow pattern of each cavity uniformed in unary branch runner system.

  • PDF

Design and Analysis of Shell Runners to Improve Cooling Efficiency in Injection Molding of Subminiature Lens (초소형 렌즈 사출성형시 냉각효율 향상을 위한 박판형 러너의 설계 및 해석)

  • Yoon, Seung Tak;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1021-1028
    • /
    • 2015
  • Subminiature lenses are currently widely used in mobile phone cameras and are usually produced by injection molding. The lens molding process has the unique feature of a runner volume that is much larger than the part volume, and this feature should be considered when determining the mold design and molding conditions. In this study, a shell-type runner was proposed as an alternative to the conventional cylindrical runner used for lens molding. An injection molding simulation was performed by applying the proposed shell runner, and the simulation results were compared with those from the cylindrical runner case. It was found that the shell runner could considerably reduce the runner cooling time with only a slight increase in the injection pressure. The effect of the runner thickness was then investigated numerically in terms of the mold filling and cooling characteristics, from which an optimal runner thickness could be determined.

Development of The New High Specific Speed Fixed Blade Turbine Runner

  • Skotak, Ales;Mikulasek, Josef;Obrovsky, Jiri
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.392-399
    • /
    • 2009
  • The paper concerns the description of the step by step development process of the new fixed blade runner called "Mixer" suitable for the uprating of the Francis turbines units installed at the older low head hydropower plants. In the paper the details of hydraulic and mechanical design are presented. Since the rotational speed of the new runner is significantly higher then the rotational speed of the original Francis one, the direct coupling of the turbine to the generator can be applied. The maximum efficiency at prescribed operational point was reached by the geometry optimization of two most important components. In the first step the optimization of the draft tube geometry was carried out. The condition for the draft tube geometry optimization was to design the new geometry of the draft tube within the original bad draft tube shape without any extensive civil works. The runner blade geometry optimization was carried out on the runner coupled with the draft tube domain. The blade geometry of the runner was optimized using automatic direct search optimization procedure. The method used for the objective function minimum search is a kind of the Nelder-Mead simplex method. The objective function concerns efficiency, required net head and cavitation features. After successful hydraulic design the modal and stress analysis was carried out on the prototype scale runner. The static pressure distribution from flow simulation was used as a load condition. The modal analysis in air and in water was carried out and the results were compared. The final runner was manufactured in model scale and it is going to be tested in hydraulic laboratory. Since the turbine with the fixed blade runner does not allow double regulation like in case of full Kaplan turbine, it can be profitably used mainly at power plants with smaller changes of operational conditions or in case with more units installed. The advantages are simple manufacturing, installation and therefore lower expenses and short delivery time for turbine uprating.