• Title/Summary/Keyword: Runge Kutta method

Search Result 502, Processing Time 0.024 seconds

Impact Analysis of Oleo-pneumatic Nose Strut for Light Aircraft (소형항공기 올레오 타입 전방착륙장치 충격해석)

  • Park, Ill-Kyung;Choi, Sun-Woo;Jang, Jae-Won
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • In this study, a nonlinear 2 degree of freedom mathematical model has been developed for impact analysis of the nose landing gear of a light aircraft which is composed of an wheel & tire, an Oleo-pneumatic shock strut and the castering wheel fork for the differential braking steering, and then the response of impact is computed using a numerical method. The mathematical model of a nose landing gear contains nonlinear characteristics which are an impact load - deflection property of a tire and internally frictional forces between an inner surface of an upper cylinder and a bearing of a lower rod due to side forces like the declined angle of strut, the moment due to an wheel fork, the side drag due to a steering and it is computed using the 4th-order Runge-Kutta method. The comparison process between analytical results and experimental results of the other proven nose landing gear is carried out to verify the mathematical model.

  • PDF

Non-linear Shimmy Analysis of a Nose Landing Gear with Friction (마찰을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.605-611
    • /
    • 2011
  • Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. It is caused by a couple of conditions such as a low torsional stiffness of the strut, a free-play in the landing gear, a wheel imbalance, or worn parts, and it may make the aircraft unstable. This study was performed for an analysis of the shimmy stability on a small aircraft. A nose landing gear was modeled as a linear system and characterized by state-equations which were used to analyze the stability both in the frequency and time-domain for predicting whether the shimmy occurs and investigating a good design range of the important parameters. The root-locus method and the 4th Runge-Kutta method were used for each analysis. Because the present system has a simple mechanism using a friction to reinforce the stability, the friction, a non-linear factor, was linearized by a describing function and considered in the analysis and observed the result of the instability reduction.

Design and Performance Evaluation of the Vibration Absorber of Vertical Direction Using Numerical Simulation and Shock Test (수치적 시뮬레이션과 충격 시험을 통한 수직방향 진동절연 완충기 설계 및 성능 평가)

  • Park, Sang-Gil;Bang, Seung-Woo;Kwon, O-Cheol;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.558-563
    • /
    • 2008
  • Vibration/shock affects biggest taking a train subtraction of vehicle and durability decline. Therefore, absorber is used for vibration/shock isolation and various qualities of the material and design are applied to isolation. This paper proposes vibration/shock absorber that applies 'Disc' spring. Through comparison with 'Disc' spring that has nonlinearity and coil spring that is having linearity, see effect that nonlinearity of isolation gets in vibration/shock Isolation. Coil spring and 'Disc' spring are non-linear numerical analysis and simulation through theory for this, get and investigate comparison result through an experiment finally. Expressed and formulated shock through 'Runge-Kutta' method/impact response to nonlinear-vibration-equation of 1 degree of freedom for numerical analysis. Double half sine pulse of excitation used and analyzed result through spectrum response analysis here. Response of disc spring is compared to response of coil spring by changing $h_o/t$ ratio with computer simulation and the usage of disc spring is increased through analysis of effect of design factors. The purpose of this paper is that the shock response of disc spring is calculated through numerical simulation and to design the optimal absorber under the limited condition. And then, the isolation effect was analyzed through the shock test.

Performance Evaluation of the Vibration Absorber of Vertical Direction using Numerical Modeling and Shock Test (수치 모델링과 충격 시험을 통한 수직방향 진동절연 완충기의 성능 평가)

  • Park, Sang-Gil;Bang, Seung-Woo;Kwon, O-Cheol;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.990-993
    • /
    • 2008
  • Vibration/shock affects biggest taking a train subtraction of vehicle and durability decline. Therefore, absorber is used for vibration/shock isolation and various qualities of the material and design are applied to isolation. This paper proposes vibration/shock absorber that applies 'Disc'spring. Through comparison with 'Disc' spring that has nonlinearity and coil spring that is having linearity, see effect that nonlinearity of isolation gets in vibration/shock isolation. Coil spring and 'Disc' spring are non-linear numerical analysis and simulation through theory for this, get and investigate comparison result through an experiment finally. Expressed and formulated shock through 'Runge-Kutta' method/impact response to nonlinear-vibration-equation of 1 degree of freedom for numerical analysis. Double half sine pulse of excitation used and analyzed result through spectrum response analysis here. Response of disc spring is compared to response of coil spring by changing ho/t ratio with computer simulation and the usage of disc spring is increased through analysis of effect of design factors. The purpose of this paper is that the shock response of disc spring is calculated through numerical simulation and to design the optimal absorber under the limited condition. And then, the isolation effect was analyzed through the shock test.

  • PDF

Thrust Characteristics of Dual Flapping Airfoils in a Biplane Configuration (복엽기 배치의 복식 플랩핑 에어포일들의 추력 특성)

  • Yu, Young-Bok;Han, Cheol-Heui;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.9-17
    • /
    • 2005
  • The wake patterns and thrust characteristics of dual flapping airfoils in a biplane configuration are investigated using an unsteady panel method. To trace complicated wake shapes behind airfoils, a core addition scheme, a vortex core model, and the fourth order Runge-Kutta convection scheme are employed. Present results are verified by comparing them with flow visualization, exact solution and published computed results. The thickness and camber of thick airfoils has an effect of decreasing thrust. The airfoils produce maximum thrust when the phase angles between plunging and pitching motions are both 90 and 120 degrees. Thrust increases as the plunge velocity is increased, which is also found as the pitch amplitude is stepped up. Thrust decreases when the distance between the airfoils is less than 0.6c.

Buckling Loads of Piles with Allowance for Self-Weight (자중효과를 고려한 말뚝의 좌굴하중)

  • Lee, Joon-Kyu;Lee, Kwang-Woo;Jeon, Young-Jin;Kwon, O-Il;Choi, Yong-Hyuk;Choi, Jeong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.187-193
    • /
    • 2023
  • This paper presents the buckling behavior of a pile considering its self-weight. The differential equation and boundary conditions governing the buckling of partially embedded piles in nonhomogeneous soils are derived. The buckling load and mode shape of the pile are numerically computed by the Runge-Kutta method combined with the Regula-Falsi algorithm. The obtained numerical solutions for bucking loads agree well with the results available from the literature. Numerical examples are given to analyze the buckling load and mode shape of the piles as affected by the self-weight, embedment ratio, slenderness ratio and boundary condition of the pile as well as the aspect ratio and rigidity ratio of the subgrade reaction. It is found that the self-weight of the pile leads to the reduction of the buckling load, indicating that neglecting the effect of self-weight may overestimate the buckling load of partially embedded piles.

Extending the OPRCB Seismic isolation system's governing equations of motion to 3D state and its application in multi-story buildings

  • M. Hosseini;S. Azhari;R. Shafie Panah
    • Earthquakes and Structures
    • /
    • v.24 no.3
    • /
    • pp.217-235
    • /
    • 2023
  • Orthogonal pairs of rollers on concave beds (OPRCB) are a low-cost, low-tech rolling-based isolating system, whose high efficiency has been shown in a previous study. However, seismic performance of OPRCB isolators has only been studied in the two-dimensional (2D) state so far. This is while their performance in the three-dimensional (3D) state differs from that of the 2D state, mainly since the vertical accelerations due to rollers' motion in their beds, simultaneously in two orthogonal horizontal directions, are added up and resulting in bigger vertical inertia forces and higher rolling resistance. In this study, first, Lagrange equations were used to derive the governing equations of motion of the OPRCB-isolated buildings in 3D. Then, some regular shear-type OPRCB-isolated buildings were considered subjected to three-component excitations of far- and near-source earthquakes, and their responses were compared to those of their fixed-base counterparts. Finally, the effects of more realistic modeling and analysis were examined by comparing the responses of isolated buildings in 2D and 3D states. Response histories were obtained by the fourth-order Runge-Kutta-Nystrom method, considering the geometrical nonlinearity of isolators. Results reveal that utilizing the OPRCB isolators effectively reduces the acceleration response, however, depending on the system specifications and earthquake characteristics, the maximum responses of isolated buildings in the 3D state can be up to 40% higher than those in the 2D state.

DEVELOPMENT OF EFFICIENT HARMONIC BALANCE METHOD WITH THE MULTIGRID METHOD (다중격자 기법이 적용된 효율적인 조화 균형법 개발)

  • Im, D.K.;Park, S.H.;Kwon, J.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.76-84
    • /
    • 2010
  • In order to analyze the periodic unsteady flow problem efficiently the partially implicit harmonic balance (PIHB) method was developed. Contrary to the existing harmonic balance method, this method handles the harmonic source term explicitly and deals with flux terms implicitly. This method has a good convergence in comparison with the full explicit harmonic method and it is easy to apply this method because there is no need to calculate the complicated flux Jacobian term by comparing with the full implicit harmonic method. With the multigrid method about the each harmonic it turns out that this method has a good convergence regardless of the number of harmonics. The oscillating flows over NACA0012 airfoil is considered to verify this method then the result correponsed to both the result of dual time stepping and explicit Runge-Kutta method.

A Study on the Stability Analysis Method Considering Bus Voltage Derivatives (모선전압 변화율을 고려한 안정도 해석법에 관한 연구)

  • Kim, Chun-Hyeon;Park, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.90-92
    • /
    • 1993
  • Stability analysis is an essential work in the operation and planning of power system. There are two categories, direct method and indirect method, and indirect method calculates the trajectories of states by numerical methods. Popular method using explicit integration has relatively low accuracy, so a more accurate method is requested. By the consideration of bus voltage variation, Runge-Kutta 4th order method can be made more accurate, but this scheme need much computation time. Through three recipes, computational cost of proposed method can be reduced. So the proposed method has improved accuracy and slight rise in cost. the method was tested on the IEEE 14 bus system.

  • PDF

A Study on the Thermal Boundary Layer Flow of a Micropolar Fluid in the Vicinity of a Wedge (미세극성 유체 유동장에 놓여진 쐐기형 물체주위의 열경계층에 관한 연구)

  • 김윤제
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.122-127
    • /
    • 1999
  • The characteristics of thermal boundary layer flow of a micropolar fluid in the vicinity of a wedge has been studied with constant surface temperature. The similarity variables found by Falkner and Skan are employed to reduce the streamwise-dependence in the coupled nonlinear boundary layer equations. Numerical solutions are presented for the heat transfer characteristics with Pr=1 using the fourth-order Runge-Kutta method and their dependence on the material parameters is discussed. The distributions of dimensionless temperature and Nusselt number across the boundary layer are compared with the corresponding flow problems for a Newtonian fluid over wedges. Numerical results show that for a constant wedge angle with a given Prandtl number, Pr=1, the effect of increasing values of K results in an increasing thermal boundary thickness for a micropolar fluid, as compared with a Newtonian fluid. For the case of the constant material parameter K, however, the heat transfer rate for a micropolar fluid is lower than that of a Newtonian fluid.

  • PDF