• Title/Summary/Keyword: Rumen cellulolytic bacteria

Search Result 60, Processing Time 0.023 seconds

Manipulation of the Rumen Ecosystem to Support High-Performance Beef Cattle - Review -

  • Jouany, J.P.;Michalet-Doreau, B.;Doreau, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.1
    • /
    • pp.96-114
    • /
    • 2000
  • Genetically selected beef cattle are fed high-energy diets in intensive production systems developed in industrial countries. This type of feeding can induce rumen dysfunctions that have to be corrected by farmers to optimise cost-effectiveness. The risk of rumen acidosis can be reduced by using slowly degradable starch, which partly escapes rumen fermentation and goes on to be digested in the small intestine. Additives are proposed to stabilise the rumen pH and restrict lactate accumulation, thus favouring the growth of cellulolytic bacteria and stimulating the digestion of the dietary plant cell wall fraction. This enhances the energy value of feeds when animals are fed maize silage for example. Supplementation of lipids to increase energy intake is known to influence the population of rumen protozoa and some associated rumen functions such as cellulolysis and proteolysis. The end products of rumen fermentation are also changed. Lipolysis and hydrogenation by rumen microbes alter the form of fatty acids supplied to animals. This effect is discussed in relation with the quality of lipids in beef and the implications for human health. Conditions for optimising the amount of amino acids from microbial proteins and dietary by-pass proteins flowing to the duodenum of ruminants, and their impact on beef production, are also examined.

Effects of Methylcellulose on Cellulolytic Bacteria Attachment and Rice Straw Degradation in the In vitro Rumen Fermentation

  • Sung, Ha Guyn;Kim, Min Ji;Upadhaya, Santi Devi;Ha, Jong K.;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.9
    • /
    • pp.1276-1281
    • /
    • 2013
  • An in vitro experiment was conducted to evaluate the effect of methylcellulose on the attachment of major cellulolytic bacteria on rice straw and its digestibility. Rice straw was incubated with ruminal mixture with or without 0.1% methylcellulose (MC). The attachment of F. succinogenes, R. flavefaciens and R. albus populations on rice straw was measured using real-time PCR with specific primer sets. Methylcellulose at the level of 0.1% decreased the attachment of all three major cellulolytic bacteria. In particular, MC treatment reduced (p<0.05) attachment of F. succinogenes on rice straw after 10 min of incubation while a significant reduction (p<0.05) in attachment was not observed until 4 h incubation in the case of R. flavefaciens and R. albus. This result indicated F. succinogenes responded to MC more sensitively and earlier than R. flavefaciens and R. albus. Dry matter digestibility of rice straw was subsequently inhibited by 0.1% MC, and there was a significant difference between control and MC treatment (p<0.05). Incubated cultures containing MC had higher pH and lower gas production than controls. Current data clearly indicated that the attachment of F. succinogenes, R. flavefaciens and R. albus on rice straw was inhibited by MC, which apparently reduced rice straw digestion.

Role of Peptides in Rumen Microbial Metabolism - Review -

  • Wallace, R.J.;Atasoglu, C.;Newbold, C.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.139-147
    • /
    • 1999
  • Peptides are formed in the rumen as the result of microbial proteinase activity. The predominant type of activity is cysteine ptoteinase, but others, such as serine proteinases, are also present. Many species of protozoa, bacteria and fungi are involved in ptoteolysis; large animal-to-animal variability is found when proteinase activities in different animals are compared. The peptides formed from proteolysis are broken down to amino acids by peptidases. Different peptides are broken down at different rates, depending on their chemical composition and particularly their N-terminal structure. Indeed, chemical addition to the N-terminus of small peptides, such as by acetylation, causes the peptides to become stable to breakdown by the rumen microbial population; the microorganisms do not appear to adapt to hydrolyse acetylated peptides even after several weeks exposure to dietary acetylated peptides, and the amino acids present in acetylated peptides are absorbed from the small intestine. The amino acids present in some acetylated peptides remain available in nutritional trials with rats, but the nutritive value of the whole amino acid mixture is decreased by acetylation. The genus Prevotella is responsible for most of the catabolic peptidase activity in the rumen, via its dipeptidyl peptidase activities, which release dipeptides rather than free amino acids from the N-terminus of oligopeptides. Studies with dipeptidyl peptidase mutants of Prevotella suggest that it may be possible to slow the rate of peptide hydrolysis by the mixed rumen microbial population by inhibiting dipeptidyl peptidase activity of Prevotella or the rate of peptide uptake by this genus. Peptides and amino acids also stimulate the growth of rumen microorganisms, and are necessary for optimal growth rates of many species growing on tapidly fermented substrates; in rich medium, most bacteria use pre-formed amino acids for more than 90% of their amino acid requirements. Cellulolytic species are exceptional in this respect, but they still incorporate about half of their cell N from pre-formed amino acids in rich medium. However, the extent to which bacteria use ammonia vs. peptides and amino acids for protein synthesis also depends on the concentrations of each, such that preformed amino acids and peptides are probably used to a much lesser extent in vivo than many in vitro experiments might suggest.

Comparison of Gayal (Bos frontalis) and Yunnan Yellow Cattle (Bos taurus): Rumen Function, Digestibilities and Nitrogen Balance during Feeding of Pelleted Lucerne (Medicago sativum)

  • Deng, Weidong;Wang, Liping;Ma, Songcheng;Jin, Bo;He, Tianbao;Yang, Zhifang;Mao, Huaming;Wanapat, Metha
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.900-907
    • /
    • 2007
  • Three male Gayal (Bos frontalis) and three male Yunnan Yellow cattle (Bos taurus) were fed pelleted lucerne and measurements made of digestibility, nitrogen utilisation, rumen fermentation and microbial population and key plasma metabolites. Total actual dry matter intake was similar but when expressed in terms of live weight or metabolic live weight feed intakes were significantly higher (p<0.05) for Gayal than cattle. Apparent digestibilities of dry matter, organic matter, fibre and dietary nitrogen were similar for both Gayal and cattle. Rumen ammonia nitrogen and total volatile fatty acids were significantly higher (p<0.05) for Gayal than cattle and total numbers of viable rumen bacteria, cellulolytic and amylolytic bacteria, but not proteolytic bacteria nor protozoa, were significantly greater (p<0.05) for Gayal than cattle. Although Gayal have a different rumen ecology to cattle, similar digestive parameters were exhibited. Further research is required to establish relationship between rumen ecology and digestive parameters.

Studies on Isolation and Characterization of Anaerobic Bacteria from Gut of Holstein Cows and Korean Male Spotted Deer (꽃사슴과 Holstein 젖소의 장내 혐기성 박테리아의 분리 및 특성)

  • 박소현;이기영;안종호;장문백;김창현
    • Journal of Animal Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.77-90
    • /
    • 2006
  • The purpose of this study was to isolate cellulolytic and hemicellulolytic anaerobic bacteria inhabiting from gut of ruminants and investigate their hydrolytic enzyme activities. Extracellular CMCase activities of H-strains isolated from the rumen of a Holstein dairy cow were higher than those of D- and DC- strains from the rumen and large intestine of Korean spotted deer. Most isolated bacteria utilized more efficiently Dehority's artificial medium containing starch, glucose and cellobiose (DAS) than those in Dehority's artificial medium containing cellulose only (DAC). The results of biochemical reactions and sugar fermentation indicated that the isolated bacteria belong to one of bacterial strains of Peptostreptococcus spp., Bifidobacterium spp., Prevotela ruminicola/buccae, Clostridium beijer/butyricum and Streptococcus intermedis which are not highly cellulolytic. Activities of Avicelase, xylanase, β-D-glucosidase, α-L-arabinofuranosidase and β-xylosidase of the isolated anaerobic bacteria in DAS were higher than those in DAC. In conclusion, the results indicated the higher enzyme activities of the isolated strains cultured in DAS medium were mainly caused by their specific carbohydrate utilization for enzyme production and growth rate. The highly cellulolytic bacteria were not isolated in the present experiment. Thus further research is required to investigate characteristics of gut bacteria from Korean spotted deer.

Effect of Levels of Supplementation of Concentrate Containing High Levels of Cassava Chip on Rumen Ecology, Microbial N Supply and Digestibility of Nutrients in Beef Cattle

  • Wanapat, M.;Khampa, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • The object of this study was to determine the influence of supplementation of concentrate containing high levels of cassava chip on rumen ecology, microbial protein and digestibility of nutrients. Four, rumen fistulated crossbred beef steers with initial body weight of 400${\pm}$10 kg were randomly assigned according to a 4${\times}$4 Latin square design. The dietary treatments were concentrate cassava chip based offering at 0, 1, 2 and 3% BW with urea-treated rice straw fed ad libitum. It was found that ruminal pH was significantly decreased with increase of concentrate. Volatile fatty acids (VFA) concentration in the rumen was significantly different among treatments. In addition, a molar proportion of propionate was higher in supplemented groups at 2 and 3% BW (p<0.05), leading to significantly decreased acetate:propionate ratio. Furthermore, microbial N supply was significantly improved and was highest at 2% BW supplementation. The efficiency of rumen microbial-N synthesis based on organic matter (OM) truly digested in the rumen was highest in level of concentrate supplementation at 2% BW (80% of cassava chip in diets). Moreover, bacterial populations such as amylolytic bacteria was linearly increased, while cellulolytic bacteria was linearly decreased (p<0.01) when cattle received concentrate supplementation in all levels. The total protozoal counts were significantly increased, while fungal zoospores were dramatically decreased in cattle receiving increased levels of concentrate. In conclusion, cassava chip can be use as energy source at 80% in concentrate and supplementation of concentrate at 2% BW with urea-treated rice straw as roughage could improve rumen fermentation efficiency in beef cattle.

Effect of Feeding Ficus infectoria Leaves on Rumen Microbial Profile and Nutrient Utilization in Goats

  • Singh, B.;Chaudhary, L.C.;Agarwal, N.;Kamra, D.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.810-817
    • /
    • 2011
  • A feeding trial was conducted to study the effect of tannin rich Pakar (Ficus infectoria) leaves on microbial profile, rumen fermentation and nutrient utilization in goats. Eight goats divided in two groups were fed pakar leaves (experimental group) and green oats (control group) as sole roughage source along with a fixed quantity of concentrate mixture for a period of 3 months. Two metabolic trials of six days duration were conducted after 30 and 90 days of experimental feeding. The dry matter intake was significantly higher (p<0.05) and digestibility's of DM, OM, CP, EE, NDF and ADF were reduced in experimental as compared with the control group. The TDN intake was similar (236.52 vs. 240.39 g/d) in both the groups. All the animals were in positive nitrogen balance. The concentration of ammonia nitrogen, TVFA, lactic acid and activities of xylanase and protease were reduced in pakar leaves fed goats. The rumen microbial profile as obtained by MPN technique showed no change in total bacterial population but total fungi and cellulolytic bacteria were reduced (p<0.05), whereas, tannin degrading/tolerant bacteria increased with the feeding of pakar leaves. Real time PCR data revealed a decrease in Ruminococcus flavefaciens, an increase in methanogens and no change in the Fibrobacter succinogenes population by feeding of pakar leaves.

Effects of Feeding System on Rumen Fermentation Parameters and Nutrient Digestibility in Holstein Steers

  • Li, D.Y.;Lee, Sang S.;Choi, N.J.;Lee, S.Y.;Sung, H.G.;Ko, J.Y.;Yun, S.G.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.10
    • /
    • pp.1482-1486
    • /
    • 2003
  • In order to compare effects of feeding systems on rumen fermentation characteristics and nutrient digestion, steers were fed either total mixed ration (TMR) or separate concentrate-roughage ration (CR). Total tract digestibility of nutrients was higher in steers receiving TMR. Especially, DM, ADF and NDF in TMR were digested to a greater extent than those in CR. Rumen pH was not influenced by the feeding systems. Holstein steers on TMR had higher ruminal $NH_3$-N than those on CR. Feeding system did not alter VFA production but TMR feeding resulted in lower A/P ratio. TMR feeding tended to increase the number of bacteria and protozoa in the rumen fluid. Also steers fed TMR generally had higher fiber degrading enzyme activities, which might be the result of increased number of cellulolytic microbes in the rumen of animals on TMR. Our results indicate that TMR may provide more favorable condition for nutrient digestion both in the rumen and in the total tract of steers.

Changes of Microbial Population in the Rumen of Dairy Steers as Influenced by Plant Containing Tannins and Saponins and Roughage to Concentrate Ratio

  • Anantasook, N.;Wanapat, M.;Cherdthong, A.;Gunun, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.11
    • /
    • pp.1583-1591
    • /
    • 2013
  • The objective of this study was to investigate microbial population in the rumen of dairy steers as influenced by supplementing with dietary condensed tannins and saponins and different roughage to concentrate ratios. Four, rumen fistulated dairy steers (Bos indicus) were used in a $2{\times}2$ factorial arrangement in a $4{\times}4$ Latin square design. The main factors were two roughage to concentrate ratios (R:C, 60:40 and 40:60) and two supplementations of rain tree pod meal (RPM) (0 and 60 g/kg of total DM intake). Chopped 30 g/kg urea treated rice straw was used as a roughage source. All animals received feed according to respective R:C ratios at 25 g/kg body weight. The RPM contained crude tannins and saponins at 84 and 143 g/kg of DM, respectively. It was found that ruminal pH decreased while ruminal temperature increased by a higher concentrate ratio (R:C 40:60) (p<0.05). In contrast, total bacterial, Ruminococus albus and viable proteolytic bacteria were not affected by dietary supplementation. Numbers of fungi, cellulolytic bacteria, Fibrobactor succinogenes and Ruminococus flavefaciens were higher while amylolytic bacteria was lower when steers were fed at 400 g/kg of concentrate. The population of Fibrobactor succinogenes, was found to be higher with RPM supplementation. In addition, the use of real-time PCR technique indicated that the population of protozoa and methanogens were decreased (p<0.05) with supplementation of RPM and with an increasing concentrate ratio. Supplementation of RPM and feeding different concentrate ratios resulted in changing the rumen microbes especially, when the animals were fed at 600 g/kg of concentrate and supplemented with RPM which significantly reduced the protozoa and methanogens population.

Effects of Tween 80 Pretreatment on Dry Matter Disappearance of Rice Straw and Cellulolytic Bacterial Adhesion

  • Lee, Chan Hee;Sung, Ha Guyn;Eslami, Moosa;Lee, Se Young;Song, Jae Y.;Lee, Sung Sill;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1397-1401
    • /
    • 2007
  • An in situ experiment was conducted to find out whether Tween 80 improves rice straw digestion through increased adhesion of major fibrolytic bacteria. Rice straw was sprayed with various levels of Tween 80 non-ionic surfactant or SDS ionic surfactant 24 h before incubation in the rumen of Holstein steers. Dry matter (DM) disappearance and adhesion of F. succinogenes, R. flavefaciens and R. albus on rice straw after in situ incubation were measured by real-time PCR. Application of Tween 80 increased DM disappearance, which was more noticeable at an application level of 1% compared to lower application levels. Application of SDS resulted in an opposite response in DM disappearance with highest reduction in DM disappearance at 1% level. In a subsequent in situ experiment, higher Tween 80 was applied to rice straw in an attempt to find the optimum application level. Tween 80 at 2.5% gave better DM disappearance than 1% with a similar result at 5%. Therefore, an adhesion study was carried out using rice straw treated with 2.5% Tween 80. Our results indicated that Tween 80 reduced adhesion of all three major rumen fibrolytic bacteria to rice straw. Present data clearly show that improved DM disappearance by Tween 80 is not due to increased bacterial adhesion onto substrates.