Browse > Article
http://dx.doi.org/10.5713/ajas.2007.900

Comparison of Gayal (Bos frontalis) and Yunnan Yellow Cattle (Bos taurus): Rumen Function, Digestibilities and Nitrogen Balance during Feeding of Pelleted Lucerne (Medicago sativum)  

Deng, Weidong (Yunnan Provincial Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science Yunnan Agricultural University)
Wang, Liping (Yunnan Provincial Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science Yunnan Agricultural University)
Ma, Songcheng (Yunnan Provincial Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science Yunnan Agricultural University)
Jin, Bo (Yunnan Provincial Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science Yunnan Agricultural University)
He, Tianbao (Nujiang District Animal Science and Veterinary Bureau)
Yang, Zhifang (Nujiang District Animal Science and Veterinary Bureau)
Mao, Huaming (Yunnan Provincial Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science Yunnan Agricultural University)
Wanapat, Metha (Department of Animal Science, Faculty of Agriculture, Khon Kaen University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.20, no.6, 2007 , pp. 900-907 More about this Journal
Abstract
Three male Gayal (Bos frontalis) and three male Yunnan Yellow cattle (Bos taurus) were fed pelleted lucerne and measurements made of digestibility, nitrogen utilisation, rumen fermentation and microbial population and key plasma metabolites. Total actual dry matter intake was similar but when expressed in terms of live weight or metabolic live weight feed intakes were significantly higher (p<0.05) for Gayal than cattle. Apparent digestibilities of dry matter, organic matter, fibre and dietary nitrogen were similar for both Gayal and cattle. Rumen ammonia nitrogen and total volatile fatty acids were significantly higher (p<0.05) for Gayal than cattle and total numbers of viable rumen bacteria, cellulolytic and amylolytic bacteria, but not proteolytic bacteria nor protozoa, were significantly greater (p<0.05) for Gayal than cattle. Although Gayal have a different rumen ecology to cattle, similar digestive parameters were exhibited. Further research is required to establish relationship between rumen ecology and digestive parameters.
Keywords
Gayal; Cattle; Nutrient Digestibilities; Rumen Ecology;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Ge, C. R., Y. B. Tian, T. Chen and Y. Wu. 1996. Studies on the meat feature of gayal (Bos frontalis) (in Chinese). Scientia Agri. Sinica. 29:75-78.
2 Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes. In: Methods in Microbiology, Vol. 3B (Ed. J. R. Norris and D. W. Ribbons). Academic Press, London and New York. pp. 117-132.
3 Kamra, D. N. 2005. Rumen Microbial Ecosystem. Curr. Sci. 89:124-135.
4 Kawashima, T., W. Summmal, P. Pholsen, R. Chaithiang and M. Kurihara. 2006. Comparative study on energy and nitrogen metabolisms between Brahman cattle and swamp buffalo fed with low quality diet. Jpn. Agric. Res. Q. 40:183-188.   DOI
5 Mao, H. M., W. D. Deng and J. K. Wen. 2005. The biology characteristics of gayal (Bos frontalis) and potential exploitation and utilization (in Chinese). J. Yunnan Agric. Univ. 20:258-261.
6 Puppo, S., S. Bartocci, S. Terramoccia, F. Grandoni and A. Amici. 2002. Rumen microbial counts and in vivo digestibility in buffaloes and cattle given different diets. Anim. Sci. 75:323-329.
7 Rajkhowa, S., D. K. Sarma and C. Rajkhowa. 2006. Seroprevalence of toxoplasma gondii antibodies in captive mithuns (Bos frontalis) from India. Vet. Parasitol. 135:369-374.   DOI   ScienceOn
8 SAS Institute Inc. 1989. SAS/STAT User's Guide: Version 6.4th edn. SAS Institute Inc., Cary, North Carolina.
9 Singh, S., K. Pradhan, S. K. Bhatia, D. C. Sangwan and V. Sagar. 1992. Relatives rumen microbial profile of cattle and buffalo fed wheat straw-concentration diet. Indian J. Anim. Sci. 62:1197-1202.
10 Wanapat, M., N. Nontaso, C. Yuangklang, S. Wora-anu, A. Ngarmsang, C. Wachirapakorn and P. Rowlinson. 2003. Comparative study between swamp buffalo and native cattle in feed digestibility and potential transfer of buffalo rumen digesta into cattle. Asian-Aust. J. Anim. Sci. 16:504-510.   과학기술학회마을   DOI
11 Wanapat, M., C. Promkot and S. Wanapat. 2006. Effect of cassoy-urea pellet as a protein source in concentrate on ruminal fementation and digestibility in cattle. Asian-Aust. J. Anim. Sci. 19:1004-1009.   과학기술학회마을   DOI
12 De Liberto, T. J. and P. J. Urness. 1993. Comparative digestive physiology of American bison and Hereford cattle. In: Proceedings of 1st International Bison Conference, LaCrosse, WI. July 1993.
13 Hawley, A. W. L. and D. G. Peden. 1982. Effects of ration, season and animal handling on composition of bison and cattle blood. J. Wildl. Dis. 18:321-338.   DOI
14 Bhambhani, R. and J. Kuspira. 1969. The somatic karyotypes of American bison and domestic cattle. Can. J. Genet. Cytol. 11:243-249.   DOI
15 AOAC. 1990. Official Methods of Analysis. 15th edn. Association of Official Analytical Chemists, Arlington, Virginia.
16 Norton, B. W., J. B. Moran and J. V. Nolan. 1979. Nitrogen metabolism in Brahman cross, buffalo, banteng and Shorthorn steers fed on low-quality roughage. Aust. J. Agric. Res. 30:341-351.   DOI
17 Vega, R. A., A. N. Del Barrio, P. P. Sangel, O. Katsube, R. M. Lapitan and T. Fujihara. 2004. Feed intake, ruminative chewing and nutrient digestibility of feedlot crossbred water buffalo and tropical grade Brahman. In: Proceedings of the 7th world buffalo congress (Volume II). October 20-23. Makati City, Philippines. pp. 375-383
18 Giasuddin, M., K. S. Huque and J. Alam. 2003. Reproductive potentials of gayal (Bos frontalis) under semi-intensive management. Asian-Aust. J. Anim. Sci. 16:331-334.   과학기술학회마을   DOI
19 Nishida, T., B. Eruden, K. Hosoda, H. Matsuyama, K. Nakagawa, T. Miyazawa and S. Shioya. 2006. Effects of green tea (Camellia sinensis) waste silage and polyethylene glycol on ruminal fermentation and blood components in cattle. Asian-Aust. J. Anim. Sci. 19:1728-1736.   DOI
20 Piers, L. S., M. J. Soares, L. M. McCormack and K. O'Dea. 1998. Is there evidence for an age-related reduction in metabolic rate? J. Appl. Physiol. 85:2196-2204.   DOI
21 Wanapat, M., K. Sommart, C. Wachirapakorn, S. Uriyapongson and C. Wattanachant. 1994. Recent advances in swamp buffalo nutrition and feeding. In: Proceedings of the First Asian Buffalo Association Congress. Jannary 17-21, 1994, Khon Kaen, Thailand. pp. 155-187.
22 Cheng, P. 1984. Livestock Breeds of China. Animal Production and Health. Paper 46 (E, F, S). Publication by FAO, Rome.
23 Gallagher, D. S. and J. E. Womack. 1992. Chromosome conservation in the Bovidae. J. Hered. 83:287-298.   DOI
24 Peden, D. G., G. M. Van Dyne, R. W. Rice and R. M. Hansen. 1974. The trophic ecology of Bison bison L. on shortgrass plains. J. Appl. Ecol. 11:489-497.   DOI   ScienceOn
25 Kanjanapruthipong, J. and B. Thaboot. 2006. Effects of neutral detergent fiber from rice straw on blood metabolites and productivity of dairy cows in the tropics center. Asian-Aust. J. Anim. Sci. 19:356-362.   DOI
26 Pal, D. T., A. S. Singh, K. Vupru and K. M. Bujarbaruah. 2004. Growth performance and nutrient utilization in male and female Mithun calves on green forage-based diet. Trop. Anim. Health Prod. 36:655-661.   DOI
27 Sommart, K. M., M. Wanapat, W. Wongsrikeao and S. Ngarmsak. 1993. Effect of yeast culture and protein levels on ruminal fermentation, intake, digestibility and performance in ruminants fed straw-based diets. In: World Conference on Animal Production (VolumeII). Edmonton, Alberta, Canda. pp. 60-61.
28 Steel, R. G. D. and J. H. Torrie. 1980. Principles and Procedures of Statistics: A Biometrical Approach. 2nd edn. McGraw-Hill Book Company, New York, New York.
29 Houpt, T. R. 1970. Transfer of urea and ammonia to the rumen. In: Physiology of Digestion and Metabolism in the Ruminant (Ed. A. T. Phillipson). Oriel Press Ltd, Newcastle upon Tyne, UK. pp. 119-131.
30 Liang, J. B., M. Matsumoto and B. A. Young. 1994. Purine derivative excretion and ruminal microbial yield in Malaysian cattle and swamp buffalo. Anim. Feed Sci. Technol. 47:189-199.   DOI   ScienceOn
31 Varel, V. H. and B. A. Dehority. 1989. Ruminal cellulolytic bacteria and protozoa from Bison, cattle-bison hybrids, and cattle fed three alfalfa-corn diets. Appl. Environ. Microbiol. 55:148-153.
32 Grant, R. J. and D. R. Mertens. 1992b. Development of buffer systems for pH control and evaluation of pH effects on fiber digestion in vitro. J. Dairy Sci. 75:1581-1587.   DOI   ScienceOn
33 Huque, K. S., M. M. Rahman and M. A. Jalil. 2001a. Study on the growth pattern of gayals (Bos frontalis) and their crossbred calves. Asian-Aust. J. Anim. Sci. 14:1245-1249.   DOI
34 Khampa, S., M. Wanapat, C. Wachirapakorn, N. Nontaso and M. Wattiaux. 2006. Effects of urea level and sodium dl-malate in concentrate containing high cassava chip on ruminal fermentation efficiency, microbial protein synthesis in lactating dairy cows raised under tropical condition. Asian-Aust. J. Anim. Sci. 19:837-844.   과학기술학회마을   DOI
35 Mondal, M., A. Dhali, C. Rajkhowa and B. K. Prakash. 2004. Secretion patterns of growth hormone in growing captive mithuns (Bos frontalis). Zool. Sci. 21:1125-1129.   DOI   ScienceOn
36 Campbell, R. G. and M. R. Taverner. 1988. Genotype and sex effects on the relationship between energy intake and protein deposition in growing pigs. J. Anim. Sci. 66:177-186.
37 Richmond, R. J., R. J. Hudson and R. J. Christopherson. 1977. Comparison of forage intake and digestibility by American bison, yak, and cattle. Acta Theriol. 22:225-230.   DOI
38 Chi, J., B. Fu, W. Nie, J. Wang, A. S. Graphodatsky and F. Yang. 2005. New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis). Cytogenet. Genome Res. 108:310-316.   DOI   ScienceOn
39 Broderick, G. A. and J. H. Kang. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 63:64-75.   DOI   ScienceOn
40 Giasuddin, M. and M. R. Islam. 2003. Physical feature, physicalogical character and behavior study of gayal (Bos frontalis). Asian-Aust. J. Anim. Sci. 16:1599-1603.   DOI
41 Dong, Q. M., X. Q. Zhao, Y. S. Ma, S. X. Xu and Q. Y. Li. 2006. Live-weight gain, apparent digestibility, and economic benefits of yaks fed different diets during winter on the Tibetan plateau. Livest. Sci. 101:199-207.   DOI   ScienceOn
42 Galyean, M. 1989. Laboratory Procedures in Animal Nutrition Research. New Mexico State University, USA.
43 Peters, H. F. 1958. A feedlot study of bison, cattalo and Hereford calves. Can. J. Anim. Sci. 38:87-90.   DOI
44 Goering, H. K. and P. J. Van Soest. 1970. Forage Fiber Analysis (Apparatus, Reagent, Procedures and Some Application): Agric. Handbook No. 379. ARS, USDA, Washington, DC.
45 ARC. 1980. The Nutrient Requirement of Ruminant Livestock. Commonwealth Agricultural Bureaux, UK.
46 Grant, R. H. and D. R. Mertens. 1992a. Influence of buffer pH and raw corn starch addition on in vitro fiber digestion kinetics. J. Dairy Sci. 75:2762-2768.   DOI   ScienceOn
47 Hawley, A. W. L., D. G. Peden and W. R. Stricklin. 1981. Bison and Hereford steer digestion of sedge hay. Can. J. Anim. Sci. 61:165-174.   DOI
48 Huque, K. S., M. M. Rahman and M. A. Jalil. 2001b. Nutritive value of major feed ingredients, usually browsed and their responses to gayals (Bos frontalis) in the hill tract area. Pak. J. Bio. Sci. 4:1559-1561.   DOI