Browse > Article
http://dx.doi.org/10.5713/ajas.2013.13217

Effects of Methylcellulose on Cellulolytic Bacteria Attachment and Rice Straw Degradation in the In vitro Rumen Fermentation  

Sung, Ha Guyn (Department of Animal Science and Technology, Sangji University)
Kim, Min Ji (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Upadhaya, Santi Devi (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Ha, Jong K. (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Lee, Sung Sill (Division of Applied Life Science and IALS, Gyeongsang National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.26, no.9, 2013 , pp. 1276-1281 More about this Journal
Abstract
An in vitro experiment was conducted to evaluate the effect of methylcellulose on the attachment of major cellulolytic bacteria on rice straw and its digestibility. Rice straw was incubated with ruminal mixture with or without 0.1% methylcellulose (MC). The attachment of F. succinogenes, R. flavefaciens and R. albus populations on rice straw was measured using real-time PCR with specific primer sets. Methylcellulose at the level of 0.1% decreased the attachment of all three major cellulolytic bacteria. In particular, MC treatment reduced (p<0.05) attachment of F. succinogenes on rice straw after 10 min of incubation while a significant reduction (p<0.05) in attachment was not observed until 4 h incubation in the case of R. flavefaciens and R. albus. This result indicated F. succinogenes responded to MC more sensitively and earlier than R. flavefaciens and R. albus. Dry matter digestibility of rice straw was subsequently inhibited by 0.1% MC, and there was a significant difference between control and MC treatment (p<0.05). Incubated cultures containing MC had higher pH and lower gas production than controls. Current data clearly indicated that the attachment of F. succinogenes, R. flavefaciens and R. albus on rice straw was inhibited by MC, which apparently reduced rice straw digestion.
Keywords
Methylcellulose; Bacterial Attachment; Cellulose Digestion; Cellulolytic Bacteria; Rice Straw;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Statistical Analysis System Institute. 1996. SAS/STATTM User's Guide: Statistics, Version 7, 5th Edition. Cary, NC.
2 Stewart, C. S., S. H. Duncan, and H. J. Flint. 1990. The properties of forms of Ruminococcus flavefaciens which differ in their ability to degrade cotton cellulose. FEMS Microbiol. Lett. 72:47-50.   DOI   ScienceOn
3 Sung, H. G., Y. Kobayashi, J. Chang, A. Ha, I. H. Hwang, and J. K. Ha. 2007. Low ruminal pH reduces dietary fiber digestion via reduced microbial attachment. Asian-Aust. J. Anim. Sci. 20:200-207.   과학기술학회마을
4 Trabalza-Marinucci, M., C. Poncet, E. Delval, and G. Fonty. 2006. Evaluation of techniques to detach particle-associated microorganisms from rumen contents. Anim. Feed Sci. Technol. 125:1-16.   DOI   ScienceOn
5 White, B. A., M. A. Rasumussen, and R. M. Gardner. 1988. Methylcellulose inhibition of Exo-$\beta$-1,4-Glucanase A from Ruminicoccus flavefaciens FD-1. Appl. Environ. Microbiol. 54:1634-1636.
6 Minato, H., M. Mitsumori, and K. -J. Cheng. 1993. Attachment of microorganisms to solid substrates in the rumen. Pages 139-145 in Proc. MIE Bioforum on Genetics, Biochemistry and Ecology of Lignocellulose Degradation. Institut Pasteur, Paris, France.
7 Miron, J. and C. W. Forsberg. 1998. Features of Fibrobacter intestinalis DR7 mutant which is impaired with its ability to adhere to cellulose. Anaerobe 4:35-43.   DOI   ScienceOn
8 Miron, J. and C. I. Forsberg. 1999. Characterization of cellulose binding proteins which are involved in adhesion mechanism of Fibrobacter intestinalis DR7. Appl. Microbiol. Biotechnol. 51:491-497.   DOI   ScienceOn
9 Miron, J., D. Ben-Ghedalia, and M. Morrison. 2001. Invited Review: Adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci. 84:1294-1309.   DOI   ScienceOn
10 Morris, E. J. and O. J. Cole. 1987. Relationships between cellulolytic activity and adhesion to cellulose in Ruminococus albus. J. Gen. Microbiol. 133:1023-1032.
11 Pell, A. N. and P. Schofield. 1993. Microbial adhesion and degradation of plant cell walls. Pages 397-423 in Forage Cell Wall Structure and Digestibility (Ed. R. D. Hatfield, H. G. Jung, J. Ralph, D. R. Buxton, D. R. Mertens, and P. J. Weimer). ASA-CSSA-SSSA, Madison, WI.
12 Reddy, S. K. K. and M. Morrison. 1998. Biochemical and molecular characterization of adherence-defective mutants of Ruminococcus albus strain 8. Page 132 in Proc. MIE Bioforum on Cellulose Degradation, Institut Pasteur, Paris, France.
13 Purdy, K. J., T. M. Embley, S. Takii, and D. B. Nedwell. 1996. Rapid extraction of DNA and rRNA from sediments by a novel hydroxyapatite spin-colum method. Appl. Environ. Microbial. 62:3905-3970.
14 Rasmussen, M. A., B. A. White, and R. B. Hespell. 1989. Improved assay for quantitating adherence of ruminal bacteria to cellulose. Appl. Environ. Microbiol. 55:2089-2091.
15 Rasmussen, M. A., R. B. Hespell, B. A. White, and R. J. Bothast. 1988. Inhibitory effects of methylcellulose on cellulose degradation by Ruminococcus flavefaciens. Appl. Environ. Microbiol. 54:890-897.
16 Cheng, K. -J., C. S. Stewart, D. Dinsdale, and J. W. Costerton. 1983. Electron microscopy of bacteria involved in the digestion of plant cell walls. Anim. Feed Sci. Technol. 10:93-120.
17 Kudo, H., K. -J. Cheng, and J. W. Costerton. 1987. Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers. Can. J. Microbiol. 33:267-272.   DOI   ScienceOn
18 Lee, S. S., J. K. Ha, and K. -J. Cheng. 2000. Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Appl. Environ. Microbiol. 66:3807-3813.   DOI   ScienceOn
19 McAllister, T. A., H. D. Bae, G. A. Jones, and K. -J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:3004-3018.
20 McDougall, E. I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem. J. 43:99-109.
21 Minato, H. and T. Suto. 1979. Technique for fractionation of bacteria in the rumen microbial ecosystem. III. Attachment of bacteria isolated from bovine rumen to starch granules in vitro and elution of bacteria attached therefrom. J. Gen. Appl. Microbiol. 25:71-78.   DOI
22 Michalet-Doreau, B., I. Fernandez, C. Peyron, L. Millet, and G. Fonty. 2001. Fibrolytic activities and cellulolytic bacterial community structure in the solid and liquid phases of rumen contents. Reprod. Nutr. Dev. 41:187-194.   DOI   ScienceOn
23 Minato, H., A. Endo, Y. Ootome, and T. Uemura. 1966. Ecological treatise on the rumen fermentation. II. The amylolytic and cellulolytic activities of fractionated bacterial portions attached to the rumen solids. J. Gen. Appl. Microbiol. 12:53-61.   DOI
24 Minato, H. and T. Suto. 1978. Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom. J. Gen. Appl. Microbiol. 24:1-16.   DOI
25 Craig, W. M., G. A. Broderick, and D. B. Ricker. 1987. Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. J. Nutr. 117:56-62.
26 Czerkawski, J. W. 1986. Degradation of solid feeds in the rumen: spatial distribution of microbial activity and its consequences. In Control of Digestion and Metabolism in Ruminants. Proceedings of the Sixth International Symposium on Ruminant Physiology, Banff, Canada, pp. 158-172 (Ed. L. P. Milligan, W. L. Grovum, and A. Dobson). Englewood Cliffs, New Jersey: Prentice Hall.
27 Dinsdale, D., E. J. Morris, and J. S. D. Bacon. 1978. Electron microscopy of the microbial populations present and their modes of attach on various cellulosic substrates undergoing digestion in the sheep rumen. Appl. Environ. Microbiol. 36:160-168.
28 Hwang, I. H., C. H. Lee, S. W. Kim, H. G. Sung, S. Y. Lee, S. S. Lee, H. Hong, Y. -C. Kwan, and J. K. Ha. 2008. Effects of mixtures of Tween80 and cellulolytic enzymes on nutrient digestion and cellulolytic bacterial adhesion. Asian-Aust. J. Anim. Sci. 21:1604-1609.   과학기술학회마을   DOI
29 Forsberg, C. W., E. Forano, and A. Chesson. 2000. Microbial adherence to the plant cell wall and enzymatic hydrolysis. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction. pp. 79-97. (Ed. P. B. Cronje). Wallingford: CABI Publishing.
30 Gong, J. and C. W. Forsberg. 1989. Factors affecting adhesion of Fibrobacter succinogenes S85 and adherence defective mutants to cellulose. Appl. Environ. Microbiol. 55:3039-3044.
31 Koike, S. and Y. Kobayshi. 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204:361-366.   DOI   ScienceOn
32 Bhat, S., R. J. Wallace, and E. R. Orskov. 1990. Adhesion of cellulolytic ruminal bacteria to barley straw. Appl. Environ. Microbiol. 56:2698-2703.
33 Williams, A. G. and N. H. Strachan. 1984. Polysaccharide degrading enzymes in microbial populations from the liquid and solid fractions of bovine rumen digesta. Can. J. Anim. Sci. 64:58-59.   DOI