• Title/Summary/Keyword: Rumen Fermentation

Search Result 516, Processing Time 0.026 seconds

Effects of feeding different levels of dietary corn silage on growth performance, rumen fermentation and bacterial community of post-weaning dairy calves

  • Lingyan Li;Jiachen Qu;Huan Zhu;Yuqin Liu;Jianhao Wu;Guang Shao;Xianchao Guan;Yongli Qu
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.261-273
    • /
    • 2024
  • Objective: The objective of this study was to evaluate the growth performance, rumen fermentation parameters and bacterial community of post-weaning dairy calves in response to five diets varying in corn silage (CS) inclusion. Methods: A total of forty Holstein weaned bull calves (80±3 days of age;128.2±5.03 kg at study initiation) were randomized into five groups (8 calves/group) with each receiving one of five dietary treatments offered as total mixed ration in a 123-d feeding study. Dietary treatments were control diet (CON; 0% CS dry matter [DM]); Treatment 1 (T1; 27.2% CS DM); Treatment 2 (T2; 46.5% CS DM); Treatment 3 (T3; 54.8% CS DM); and Treatment 4 (T4; 67.2% CS DM) with all diets balanced for similar protein and energy concentration. Results: Results showed that calves offered CS had greater average daily gain, body length and chest depth growth, meanwhile altered rumen fermentation indicated by decreased rumen acetate concentrations. Principal coordinate analysis showed the rumen bacterial community structure was affected by varying CS inclusion diets. Bacteroidetes and Firmicutes were the predominant bacterial phyla in the calf rumens across all treatments. At the genus level, the abundance of Bacteroidales_RF16_group was increased, whereas Unclassified_Lachnospiraceae was decreased for calves fed CS. Furthermore, Spearman's correlation test between the rumen bacteria and rumen fermentation parameters indicated that Bacteroidales_RF16_group and Unclassified Lachnospiraceae were positively correlated with propionate and acetate, respectively. Conclusion: The results of the current study suggested that diet CS inclusion was beneficial for post-weaning dairy calf growth, with 27.2% to 46.5% CS of diet DM recommended to achieve improved growth performance. Bacteroidales_RF16_group and Unclassified Lachnospiraceae play an important role in the rumen fermentation pattern for post-weaning calves fed CS.

Effects of Soybean Small Peptides on Rumen Fermentation and on Intestinal and Total Tract Digestion of Luxi Yellow Cattle

  • Wang, W.J.;Yang, W.R.;Wang, Y.;Song, E.L.;Liu, X.M.;Wan, F.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.1
    • /
    • pp.72-81
    • /
    • 2013
  • Four Luxi beef cattle ($400{\pm}10$ kg) fitted with ruminal, duodenal and ileal cannulas were used in a $4{\times}4$ Latin square to assess the effects of soybean small peptide (SSP) infusion on rumen fermentation, diet digestion and flow of nutrient in the gastrointestinal tract. The ruminal infusion of SSP was 0 (control), 100, 200 and 300 g/d. Ruminal SSP infusion linearly (p<0.01) and quadratically (p<0.01) increased microbial protein synthesis and rumen ammonia-N concentration. Concentrations of total volatile fatty acid were linearly increased (p = 0.029) by infusion SSP. Rumen samples were obtained for analysis of microbial ecology by real-time PCR. Populations of rumen Butyrivibrio fibrisolvens, Streptococcus bovis, Ciliate protozoa, Ruminococcus flavefaciens, and Prevotella ruminicola were expressed as a proportion of total Rumen bacterial 16S ribosomal deoxyribonucleic acid (rDNA). Butyrivibrio fibrisolvens populations which related to total bacterial 16S rDNA were increased (p<0.05), while Streptococcus bovis populations were linearly (p = 0.049) and quadratically (p = 0.020) decreased by infusion of SSP. Apparent rumen digestibility of DM and NDF were (Q, p<0.05; L, p<0.05) increased with infusion SSP. Total tract digestion of DM, OM and NDF were linearly (p<0.01) and quadratically (p<0.01) increased by infusing SSP. The flow of total amino acids (AA), essential amino acids (EAA) and individual amino acids were linearly (p<0.01) and quadratically (p<0.01) increased with infusion SSP. The digestibility of Lysine was quadratically (p = 0.033) increased and apparent degradability of Arginine was linearly (p = 0.032) and quadratically (p = 0.042) increased with infusion SSP. The results indicated that infusion SSP could improve nutrient digestion, ruminal fermentation and AA availability.

Fermentation of Environmental Friend Total Mixed Ration and Alteration of Rumen Fermentation Characteristics (환경친화적 섬유질 배합사료의 발효와 반추위 발효특성 변화)

  • Ryu, Chae-Hwa;Park, Myung-Sun;Park, Chul;Choi, Nag-Jin;Cho, Sang-Buem
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.461-473
    • /
    • 2017
  • Total mixed ration (TMR) including concentrate diet and roughage together have been used for the ruminant animal. Relatively high concentrations of moisture and water soluble carbohydrate are representative feature of TMR. Those moisture and water can also provide a niche for bacterial growth. Therefore, a possible fermentation of TMR induced by micro-organism is generally accepted. The present study hypothesized that different lactic acid bacteria could alter fermentation of TMR and subsequently rumen fermentation. Three lactic acid bacteria, Lactobacillus paracasei (A), L. plantarum (B) and L. parabuchneri (C), were employed and 7 treatments under full factorial design were compared with control without inoculation. TMR for dairy cow was used. Significant alterations by treatments were detected at lactic acid and butyric acid contents in TMR (p<0.05). Treatment AC (mixture of A and C) and BC (mixture of B and C) showed great lactate production. Great butyrate production was found at treatment C. At in vitro rumen fermentation, treatments B, C and AB (mixture of A and B) showed significantly great total gas production (p<0.05). All treatments except treatments B and AB, showed less dry matter digestibility, significantly (p<0.05). Total volatile fatty acid production at treatment AC was significantly greater than others (p<0.05). In individual volatile fatty acid production, treatment AB and AC showed great acetate and propionate productions, significantly (p<0.05). This study investigated correlation between organic acid production in TMR and rumen volatile fatty acid production. And it was found that butyric acid in TMR had significant negative correlation with acetate, propionate, total volatile fatty acid, AP ratio and dry matter digestibility.

Nicotinic acid changes rumen fermentation and apparent nutrient digestibility by regulating rumen microbiota in Xiangzhong black cattle

  • Zhuqing Yang;Linbin Bao;Wanming Song;Xianghui Zhao;Huan Liang;Mingjin Yu;Mingren Qu
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.240-252
    • /
    • 2024
  • Objective: The aim of this study was to investigate the impact of dietary nicotinic acid (NA) on apparent nutrient digestibility, rumen fermentation, and rumen microbiota in uncastrated Xiangzhong black cattle. Methods: Twenty-one uncastrated Xiangzhong black cattle (385.08±15.20 kg) aged 1.5 years were randomly assigned to the control group (CL, 0 mg/kg NA in concentrate diet), NA1 group (800 mg/kg NA in concentrate diet) and NA2 group (1,200 mg/kg NA in concentrate diet). All animals were fed a 60% concentrate diet and 40% dried rice straw for a 120-day feeding experiment. Results: Supplemental NA not only enhanced the apparent nutrient digestibility of acid detergent fiber (p<0.01), but also elevated the rumen acetate and total volatile fatty acid concentrations (p<0.05). 16S rRNA gene sequencing analysis of rumen microbiota revealed that dietary NA changed the diversity of rumen microbiota (p<0.05) and the abundance of bacterial taxa in the rumen. The relative abundances of eight Erysipelotrichales taxa, five Ruminococcaceae taxa, and five Sphaerochaetales taxa were decreased by dietary NA (p<0.05). However, the relative abundances of two taxa belonging to Roseburia faecis were increased by supplemental 800 mg/kg NA, and the abundances of seven Prevotella taxa, three Paraprevotellaceae taxa, three Bifidobacteriaceae taxa, and two operational taxonomic units annotated to Fibrobacter succinogenes were increased by 1,200 mg/kg NA in diets. Furthermore, the correlation analysis found significant correlations between the concentrations of volatile fatty acids in the rumen and the abundances of bacterial taxa, especially Prevotella. Conclusion: The results from this study suggest that dietary NA plays an important role in regulating apparent digestibility of acid detergent fiber, acetate, total volatile fatty acid concentrations, and the composition of rumen microbiota.

Effect of Feeding High Forage Diets with Supplemental Fat on Blood Metabolites, Rumen Fermentation and Dry Matter Digestibility in Dairy Cows

  • Abdullah, M.;Young, J.W.;Tyler, H.D.;Mohiuddin, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.4
    • /
    • pp.451-456
    • /
    • 2000
  • Fifty mid-lactation Holstein cows were used in a six-week feeding trial to study effects of high-forage, and high-fat diets on blood constituents, rumen fermentation and dry matter digestibility. Cows were divided into 10 replicates, each consisting of five cows. Each cow was assigned to a control (diet 1) or one of the four experimental diets (high-forage (75%), high-fat (7.5%) (diet 2); high-forage. medium-fat (5.0%) (diet 3); medium forage (65%), high-fat (diet 4); medium-forage, medium-fat (diet 5)), or a control diet containing about 50% forage and 2% fat. All diets were isonitrogenous (17.7% crude protein). The forage mixture consisted of 20% alfalfa hay, 40% alfalfa haylage, and 40% corn silage. Supplemental fat included 80% rumen-protected fat and 20% yellow grease. A non-significant difference was observed in concentrations of blood glucose for cows on different experimental and control diets. Plasma nonesterified fatty acids (NEFA) were higher in cows consuming experimental diets than those consuming the control diet. However, differences in NEFA concentrations in the plasma of cows consuming diets with different forage and fat levels were not significant. Rumen pH, concentration of volatile fatty acids (VFA) in rumen contents, and dry matter digestibility of control and experimental diets, and diets with different levels of forage and supplemental fat did not differ significantly.

Effects of nitrogen gas flushing in comparison with argon on rumen fermentation characteristics in in vitro studies

  • Park, KiYeon;Lee, HongGu
    • Journal of Animal Science and Technology
    • /
    • v.62 no.1
    • /
    • pp.52-57
    • /
    • 2020
  • In rumen in vitro experiments, although nitrogen gas (N2) flushing has been widely used, its effects on rumen fermentation characteristics are not clearly determined. The present study is the first to evaluate the effects of N2 flushing on rumen fermentation characteristics in in vitro batch culture system by comparing with new applicable non-metabolizable gas: argon (Ar). The rumen fluid was taken from two Korean native heifers followed by incubation for 3, 9, 12, and 24 h with N2 or Ar flushing. As a result, in all incubation time, N2 flushing resulted in higher total gas production than Ar flushing (p < 0.01). Additionally, in N2 flushing group, ammonia nitrogen was increased (p < 0.01). However, volatile fatty acids profiles and pH were not affected by the flushing gases (p > 0.05). In conclusion, the present study demonstrated that N2 flushing can influence the rumen nitrogen metabolism via increased ammonia nitrogen concentration and Ar flushing can be used as a new alternative flushing gas.

Effects of Sampling Techniques and Sites on Rumen Microbiome and Fermentation Parameters in Hanwoo Steers

  • Song, Jaeyong;Choi, Hyuck;Jeong, Jin Young;Lee, Seul;Lee, Hyun Jung;Baek, Youlchang;Ji, Sang Yun;Kim, Minseok
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1700-1705
    • /
    • 2018
  • We evaluated the influence of sampling technique (cannulation vs. stomach tube) and site (dorsal sac vs. ventral sac) on the rumen microbiome and fermentation parameters in Hanwoo steers. Rumen samples were collected from three cannulated Hanwoo steers via both a stomach tube and cannulation, and 16S rRNA gene amplicons were sequenced on the MiSeq platform to investigate the rumen microbiome composition among samples obtained via 1) the stomach tube, 2) dorsal sac via rumen cannulation, and 3) ventral sac via rumen cannulation. A total of 722,001 high-quality 16S rRNA gene sequences were obtained from the three groups and subjected to phylogenetic analysis. There was no significant difference in the composition of the major taxa or alpha diversity among the three groups (p>0.05). Bacteroidetes and Firmicutes represented the first and second most dominant phyla, respectively, and their abundances did not differ among the three groups (p>0.05). Beta diversity principal coordinate analysis also did not separate the rumen microbiome based on the three sample groups. Moreover, there was no effect of sampling site or method on fermentation parameters, including pH and volatile fatty acids (p>0.05). Overall, this study demonstrates that the rumen microbiome and fermentation parameters are not affected by different sampling techniques and sampling sites. Therefore, a stomach tube can be a feasible alternative method to collect representative rumen samples rather than the standard and more invasive method of rumen cannulation in Hanwoo steers.

Recent Application Technologies of Rumen Microbiome Is the Key to Enhance Feed Fermentation (최근 반추위 미생물 군집의 응용기술을 이용한 사료효율 개선연구)

  • Islam, Mahfuzul;Lee, Sang-Suk
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1244-1253
    • /
    • 2018
  • Rumen microbiome consists of a wide variety of microorganisms, such as bacteria, archaea, protozoa, fungi, and viruses, that are in a symbiotic relationship in a strict anaerobic environment in the rumen. These rumen microbiome, a vital maker, play a significant role in feed fermentation within the rumen and produce different volatile fatty acids (VFAs). VFAs are essential for energy metabolism and protein synthesis of the host animal, even though emission of methane gas after feed fermentation is considered a negative indicator of loss of dietary energy of the host animal. To improve rumen microbial efficiency, a variety of approaches, such as feed formulation, the addition of natural feed additives, dietary feed-microbes, etc., have taken to increase ruminant performance. Recently with the application of high-throughput sequencing or next-generation sequencing technologies, especially for metagenomics and metatranscriptomics of rumen microbiomes, our understanding of rumen microbial diversity and function has significantly increased. The metaproteome and metabolome provide deeper insights into the complicated microbial network of the rumen ecosystem and its response to different ruminant diets to improve efficiency in animal production. This review summarized some recent advances of rumen microbiome techniques, especially "meta-omics," viz. metagenomic, metatranscriptomic, metaproteomic, and metabolomic techniques to increase feed fermentation and utilization in ruminants.

Can a Fermentation Gas Mainly Produced by Rumen Isotrichidae Ciliates be a Potential Source of Biohydrogen and a Fuel for a Chemical Fuel Cell?

  • Piela, Piotr;Michalowski, Tadeusz;Miltko, Renata;Szewczyk, Krzysztof W.;Sikora, Radoslaw;Grzesiuk, Elzbieta;Sikora, Anna
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1092-1100
    • /
    • 2010
  • Bacteria, fungi, and protozoa inhabiting the rumen, the largest chamber of the ruminants' stomach, release large quantities of hydrogen during the fermentation of carbohydrates. The hydrogen is used by coexisting methanogens to produce methane in energy-yielding processes. This work shows, for the first time, a fundamental possibility of using a hydrogen-rich fermentation gas produced by selected rumen ciliates to feed a low-temperature hydrogen fuel cell. A biohydrogen fuel cell (BHFC) was constructed consisting of (i) a bioreactor, in which a hydrogen-rich gas was produced from glucose by rumen ciliates, mainly of the Isotrichidae family, deprived of intra- and extracellular bacteria, methanogens, and fungi; and (ii) a chemical fuel cell of the polymer-electrolyte type (PEFC). The fuel cell was used as a tester of the technical applicability of the fermentation gas produced by the rumen ciliates for power generation. The average estimated hydrogen yield was ca. 1.15 mol $H_2$ per mole of fermented glucose. The BHFC performance was equal to the performance of the PEFC running on pure hydrogen. No fuel cell poisoning effects were detected. A maximum power density of $1.66\;kW/m^2$ (PEFC geometric area) was obtained at room temperature. The maximum volumetric power density was $128\;W/m^3$ but the coulombic efficiency was only ca. 3.8%. The configuration of the bioreactor limited the continuous operation time of this BHFC to ca. 14 h.

Abatement of Methane Production from Ruminants: Trends in the Manipulation of Rumen Fermentation

  • Kobayashi, Yasuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.410-416
    • /
    • 2010
  • Methane emitted from ruminant livestock is regarded as a loss of feed energy and also a contributor to global warming. Methane is synthesized in the rumen as one of the hydrogen sink products that are unavoidable for efficient succession of anaerobic microbial fermentation. Various attempts have been made to reduce methane emission, mainly through rumen microbial manipulation, by the use of agents including chemicals, antibiotics and natural products such as oils, fatty acids and plant extracts. A newer approach is the development of vaccines against methanogenic bacteria. While ionophore antibiotics have been widely used due to their efficacy and affordable prices, the use of alternative natural materials is becoming more attractive due to health concerns regarding antibiotics. An important feature of a natural material that constitutes a possible alternative methane inhibitor is that the material does not reduce feed intake or digestibility but does enhance propionate that is the major hydrogen sink alternative to methane. Some implications of these approaches, as well as an introduction to antibiotic-alternative natural materials and novel approaches, are provided.