Browse > Article
http://dx.doi.org/10.4014/jmb.1001.01032

Can a Fermentation Gas Mainly Produced by Rumen Isotrichidae Ciliates be a Potential Source of Biohydrogen and a Fuel for a Chemical Fuel Cell?  

Piela, Piotr (Industrial Chemistry Research Institute)
Michalowski, Tadeusz (Institute of Animal Physiology and Nutrition, Polish Academy of Sciences)
Miltko, Renata (Institute of Animal Physiology and Nutrition, Polish Academy of Sciences)
Szewczyk, Krzysztof W. (Faculty of Chemical and Process Engineering, Warsaw University of Technology)
Sikora, Radoslaw (Institute of Radioelectronics, Warsaw University of Technology)
Grzesiuk, Elzbieta (Institute of Biochemistry and Biophysics, Polish Academy of Sciences)
Sikora, Anna (Institute of Biochemistry and Biophysics, Polish Academy of Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.7, 2010 , pp. 1092-1100 More about this Journal
Abstract
Bacteria, fungi, and protozoa inhabiting the rumen, the largest chamber of the ruminants' stomach, release large quantities of hydrogen during the fermentation of carbohydrates. The hydrogen is used by coexisting methanogens to produce methane in energy-yielding processes. This work shows, for the first time, a fundamental possibility of using a hydrogen-rich fermentation gas produced by selected rumen ciliates to feed a low-temperature hydrogen fuel cell. A biohydrogen fuel cell (BHFC) was constructed consisting of (i) a bioreactor, in which a hydrogen-rich gas was produced from glucose by rumen ciliates, mainly of the Isotrichidae family, deprived of intra- and extracellular bacteria, methanogens, and fungi; and (ii) a chemical fuel cell of the polymer-electrolyte type (PEFC). The fuel cell was used as a tester of the technical applicability of the fermentation gas produced by the rumen ciliates for power generation. The average estimated hydrogen yield was ca. 1.15 mol $H_2$ per mole of fermented glucose. The BHFC performance was equal to the performance of the PEFC running on pure hydrogen. No fuel cell poisoning effects were detected. A maximum power density of $1.66\;kW/m^2$ (PEFC geometric area) was obtained at room temperature. The maximum volumetric power density was $128\;W/m^3$ but the coulombic efficiency was only ca. 3.8%. The configuration of the bioreactor limited the continuous operation time of this BHFC to ca. 14 h.
Keywords
Rumen; Isotrichidae; biohydrogen; fermentation; glucose; fuel cell;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Li, C. and H. H. P. Fang. 2007. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Environ. Sci. Technol. 37: 1-39.   DOI   ScienceOn
2 Fan, Y., H. Hu, and H. Liu. 2007. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J. Power Sources 171: 348-354.   DOI   ScienceOn
3 Gijzen, H. J., K. B. Zwart, F. J. Verhagen, and G. P. Vogels. 1988. High-rate two-phase process for the anaerobic degradation of cellulose, employing rumen microorganisms for an efficient acidogenesis. Biotechnol. Bioeng. 31: 418-425.   DOI   ScienceOn
4 Michalowski, T. 1975. Effect of different diets on the diurnal concentration of ciliate protozoa in the rumen of water buffalo. J. Agric. Sci. 85: 145-150.   DOI
5 Williams, A. G. 1986. Rumen holotrich protozoa. Microbiol. Rev. 50: 25-49.
6 Van Hoven, W. and R. A. Prins. 1977. Carbohydrate metabolism by the rumen ciliate Dasytricha ruminanium. Protistologica 13: 599-606.
7 Van Soest, P. J. 1983. Nutritional Ecology of the Ruminant. O&B Books, Inc., Corvallis.
8 Wereszka, K. and T. Micha owski. 2009. The digestion and utilization of starch by the rumen protozoan Diploplastron affine. 6th International Symposium of Anaerobic Microbiology (ISAM 2009), Liblice Chateau, Czech Republic, p. 83.
9 Wilson, M. S. and S. Gottesfeld. 1992. High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells. J. Electrochem. Soc. 139: L28-L30.   DOI
10 Williams, A. G. and G. S. Coleman. 1997. The rumen protozoa, pp. 73-139. In P. N. Hobson and C. S. Stewart (eds.). The Rumen Microbial Ecosystem. Blackie Academic & Professional, London, Wheinheim, New York, Tokyo, Melbourne, Madras.
11 Williams, A. G. and G. S. Coleman. 1992. The Rumen Protozoa. Springer Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest.
12 Michalowski, T. 1997. Digestion and fermentation of microcrystalline cellulose by the rumen ciliate protozoon Eudiplodinium maggii. Acta Protozool. 36: 181-185.
13 Suzuki, S. and I. Karube. 1983. Energy production with immobilized cells, pp. 281-310. In Wingard, L. B. (ed.). Applied Biochemistry and Bioengineering. Academic Press.
14 Suzuki, S., I. Karube, T. Matsunaga, S. Kuriyama, N. Suzuki, T. Shirogami, and T. Takamura. 1980. Biochemical energy conversion using immobilized whole cells of Clostridium butyricum. Biochimie 62: 353-358.   DOI   ScienceOn
15 Mandal, B., K. Nath, and D. Das. 2006. Improvement of biohydrogen production under decreased partial pressure of $H_2$ by Enterobacter cloacae. Biotechnol. Lett. 28: 831-835.   DOI   ScienceOn
16 Michalowski, T. 1978. A simple system for continuous culture of rumen ciliates. Bull. Pol. Acad. Sci. Ser. Sci. Biol. 27: 581-583.
17 Michalowski, T., G. Be ecki, E. Kwiatkowska, and J. J. Paj k. 2003. The effect of selected rumen fauna on fibrolytic enzymes activities, bacterial mass, fibre disappearance and fermentation pattern in sheep. J. Anim. Feed Sci. 12: 45-64.
18 Michalowski, T., K. Rybicka, K. Wereszka, and A. Kasperowicz. 2001. Ability of the rumen ciliate Epidinium ecaudatum to digest and use crystalline cellulose and xylan for in vitro growth. Acta Protozool. 40: 203-210.
19 Orpin, C. G. and K. N. Joblin. 1997. The rumen anaerobic fungi, pp. 129-151. In P. N. Hobson and C. S. Stewart (eds.). The Rumen Microbial Ecosystem. Blackie Academic & Professional, London, Wheinheim, New York, Tokyo, Melbourne, Madras.
20 Lopes Pinto, F. A., O. Troshina, and P. Lindblad. 2002. A brief look at three decades of research on cyanobacterial hydrogen evolution. Int. J. Hydrogen Energy 27: 1209-1215.   DOI   ScienceOn
21 Lovley, D. R. and K. P. Nevin. 2008. Electricity production with electricigens, pp. 295-306. In J. D. Wall, C. S. Harwood, and A. Demain (eds.). Bioenergy. ASM Press.
22 Coleman, G. S., J. I. Davies, and M. A. Cash. 1972. The cultivation of the rumen ciliates Epidinium ecaudatum caudatum and Polyplastron multivesiculatum in vitro. J. Gen. Microbiol. 73: 509-521.   DOI   ScienceOn
23 Czerkawski, J. W. 1986. An Introduction to Rumen Studies. Pergamon Press, Oxford, New York, Toronto, Sydney, Frankfurt.
24 Das, D. and T. N. Veziroglu. 2008. Advances in biological hydrogen production processes. Int. J. Hydrogen Energy 33: 6046-6057.   DOI   ScienceOn
25 Dehority, B. A. and C. G. Orpin. 1997. Development of, and natural fluctuations in, rumen microbial populations, pp. 196-245. In P. N. Hobson, and C. S. Stewart (eds.). The Rumen Microbial Ecosystem. Blackie Academic & Professional, London, Wheinheim, New York, Tokyo, Melbourne, Madras.
26 Ellis, J. E., P. S. McIntyre, M. Saleh, A. G. Williams, and D. Lloyd. 1991. Influence of $CO_2$ and low concentration of $O_2$ on fermentative metabolism of the ruminal ciliate Polyplastron multivesiculatum. Appl. Environ. Microbiol. 57: 1400-1407.
27 Fan, Y., H. Hu, and H. Liu. 2007. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ. Sci. Technol. 41: 8154-8158.   DOI   ScienceOn
28 Ghirardi, M. L., L. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum, and A. Melis. 2000. Microalgae: A green source of renewable $H_2$. Trends Biotechnol. 18: 506-511.   DOI   ScienceOn
29 Hallenbeck, P. C. and D. Ghosh. 2009. Advances in biohydrogen production: The way forward. Trends Biotechnol. 27: 287-297.   DOI   ScienceOn
30 Ziolecki, A. and E. Kwiatkowska. 1973. Gas chromatography of C1 to C% fatty acids in the rumen fluid and fermentation media. J. Chromatogr. 80: 250-254.   DOI   ScienceOn
31 Shin, J. W., J. H. Yoon, S. H. Lee, and T. H. Park. 2010. Hydrogen production from formic acid in pH-stat fed-batch operation for direct supply for fuel cell. Bioresource Technol. 101 (Suppl 1): S53-S58.
32 Hungate, R. E. 1942. The cultivation of Eudiplodinium neglectum with experiments on the digestion of cellulose. Biol. Bull. Mar. Biol. Lab. Woods Hole 83: 303-319.   DOI   ScienceOn
33 Jounany, J. P., T. Michalowski, S. Toillon, and J. Senaud. 1994. Contribution of the rumen ciliate Polyplastron multivesiculatum to the degradation and fermentation of crystalline or soluble cellulose. Annu. Zootech. 43 (Suppl. 1): 22S.   DOI   ScienceOn
34 Abou Akkada, A. R. and B. H. Howard. 1960. The biochemistry of rumen protozoa. 3. The carbohydrate metabolism of Entodinium. Biochem. J. 76: 445-451.
35 Rismani-Yazdi, H., A. D. Christy, B. A. Dehority, M. Morrison, Z. Yu, and O. H. Tuovinen. 2007. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol. Bioeng. 97: 1398-1407.   DOI   ScienceOn
36 Santa Rosa, D. T., D. G. Pinto, V. S. Silva, R. A. Silva, and C. M. Rangel. 2007. High performance PEMFC stack with opencathode at ambient pressure and temperature conditions. Int. J. Hydrogen Energy 32: 4350-4357.   DOI   ScienceOn
37 Springer, T. E., T. Rockward, T. A. Zawodzinski, and S. Gottesfeld. 2001. Model for polymer electrolyte fuel cell operation on reformate feed: Effects of CO, $H_2$ dilution, and high fuel utilization. J. Electrochem. Soc. 148: A11-A23.   DOI   ScienceOn
38 Stewart, C. S., H. J. Flint and M. P. Bryant. 1997. The rumen bacteria, pp. 10-72. In P. N. Hobson and C. S. Stewart (eds.). The Rumen Microbial Ecosystem. Blackie Academic & Professional, London, Wheinheim, New York, Tokyo, Melbourne, Madras.
39 Jung, G.-B., K.-F. Lo, A. Su, F.-B. Weng, C.-H. Tu, T.-F. Yang, and S.-H. Chan. 2008. Experimental evaluation of an ambient forced-feed air-supply PEM fuel cell. Int. J. Hydrogen Energy 33: 2980-2985.   DOI   ScienceOn
40 Prins, R. A. and W. Van Hoven. 1977. Carbohydrate fermentation by the rumen ciliate Isotricha prostoma. Protistologica 13: 549-556.
41 Kivaisi, A. K., H. J. Gijzen, H. J. M. Op den Camp, and G. D. Vogels. 1992. Conversion of cereal residues into biogas in a rumen-derived process. World J. Microbiol. Biotechnol. 8: 428-433.   DOI   ScienceOn
42 Kraemer, J. T. and D. M. Bagley. 2007. Improving the yield from fermentative hydrogen production. Biotechnol. Lett. 29: 685-695.   DOI   ScienceOn
43 Lloyd, D., K. Hillman, N. Yarlett, and A. G. Williams. 1989. Hydrogen production by rumen holotrich protozoa: Effects of oxygen and implications for metabolic control by in situ conditions. J. Protozool. 36: 205-213.
44 Logan, B. E. 2008. Microbial Fuel Cells. John Wiley & Sons, Hoboken, New Jersey.
45 Logan, B. E., B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey. 2006. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 40: 5181-5192   DOI   ScienceOn
46 Bullen, R. A., T. C. Arnot, J. B. Lakeman, and F. C. Walsh. 2006. Biofuel cells and their development. Biosens. Bioelectron. 21: 2015-2045.   DOI   ScienceOn
47 Aelterman, P., K. Rabaey, T. H. Pham, N. Boon, and W. Verstraete. 2006. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40: 3388-3394.   DOI   ScienceOn
48 Bonhomme, A., G. Fonty, M. J. Foglietti, D. Robic, and M. Weber. 1986. Endo-1,4-$\beta$-glucanase and $\beta$-glucosidase in the ciliate Polyplastron multivesiculatum free of cellulolytic bacteria. Can. J. Microbiol. 32: 219-225.   DOI