• 제목/요약/키워드: Rule weight

검색결과 245건 처리시간 0.023초

Generalized Fuzzy Quantitative Association Rules Mining with Fuzzy Generalization Hierarchies

  • Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권3호
    • /
    • pp.210-214
    • /
    • 2002
  • Association rule mining is an exploratory learning task to discover some hidden dependency relationships among items in transaction data. Quantitative association rules denote association rules with both categorical and quantitative attributes. There have been several works on quantitative association rule mining such as the application of fuzzy techniques to quantitative association rule mining, the generalized association rule mining for quantitative association rules, and importance weight incorporation into association rule mining fer taking into account the users interest. This paper introduces a new method for generalized fuzzy quantitative association rule mining with importance weights. The method uses fuzzy concept hierarchies fer categorical attributes and generalization hierarchies of fuzzy linguistic terms fur quantitative attributes. It enables the users to flexibly perform the association rule mining by controlling the generalization levels for attributes and the importance weights f3r attributes.

상황 인지 서비스를 위한 경량 규칙 엔진 (A Light-Weight Rule Engine for Context-Aware Services)

  • 유승규;조상영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권2호
    • /
    • pp.59-68
    • /
    • 2016
  • 상황 인지 서비스는 서비스 대상의 주변 상황을 인지하여 상황에 맞는 유용한 서비스를 제공한다. 규칙 기반 시스템은 상황 정보를 IF 구문으로 표현하고 상황에 따른 동작을 THEN 구문으로 표현하는 규칙을 사용하여 상황 인지 서비스를 제공할 수 있다. 본 논문에서는 스마트 사물을 위하여 메모리 사용을 최적화한 경량 규칙 엔진을 제안한다. 제안된 엔진은 규칙을 기초 연산 단위로 관리하고 계산 값을 저장하는 메모리를 최소화하였으며 해시 표를 사용하여 규칙 및 상황 정보를 효율적으로 관리한다. 실제 쥐 훈련 시스템에서 사용하는 규칙 집합을 이용하여 제안된 엔진이 기존 Rete 알고리즘에 비하여 실행 속도는 다소 느리지만 매우 작은 메모리를 사용함을 확인하였다.

호흡곤란환자의 입-퇴원 분석을 위한 규칙가중치 기반 퍼지 분류모델 (Rule Weight-Based Fuzzy Classification Model for Analyzing Admission-Discharge of Dyspnea Patients)

  • 손창식;신아미;이영동;박형섭;박희준;김윤년
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권1호
    • /
    • pp.40-49
    • /
    • 2010
  • A rule weight -based fuzzy classification model is proposed to analyze the patterns of admission-discharge of patients as a previous research for differential diagnosis of dyspnea. The proposed model is automatically generated from a labeled data set, supervised learning strategy, using three procedure methodology: i) select fuzzy partition regions from spatial distribution of data; ii) generate fuzzy membership functions from the selected partition regions; and iii) extract a set of candidate rules and resolve a conflict problem among the candidate rules. The effectiveness of the proposed fuzzy classification model was demonstrated by comparing the experimental results for the dyspnea patients' data set with 11 features selected from 55 features by clinicians with those obtained using the conventional classification methods, such as standard fuzzy classifier without rule weights, C4.5, QDA, kNN, and SVMs.

빈발도와 가중치를 이용한 서비스 연관 규칙 마이닝 (Mining Association Rule on Service Data using Frequency and Weight)

  • 황정희
    • 디지털콘텐츠학회 논문지
    • /
    • 제17권2호
    • /
    • pp.81-88
    • /
    • 2016
  • 일반적인 빈발패턴 탐사 방법은 항목의 빈발도만을 고려한다. 그러나 유용한 정보를 추출하는 데 있어 빈발도와 더불어 고려해야 하는 것은 빈발항목이 아니더라도 연관된 항목이 주기적으로 함께 발생한다면 시기나 시간에 따라 관심의 중요도가 변화하는 것을 고려해야 한다. 즉, 시간에 따라 사용자가 요구하는 서비스의 중요도는 다르므로 각 서비스 항목에 대한 중요도의 값을 고려하여 마이닝 하는 방법이 필요하다. 본 논문에서는 서비스 온톨로지 기반으로 가중치를 이용한 서비스 빈발 패턴을 추출하는 마이닝 기법을 제안한다. 제안하는 기법은 시공간 상황을 기반으로 서비스의 중요도를 고려한 가중치를 부여하여 연관 서비스를 발견한다. 새롭게 탐사되는 서비스는 저장되어 있는 서비스 규칙과의 새로운 조합을 통해 사용자에게 최적의 서비스 정보를 제공할 수 있는 기반이 된다.

변형하이브리드 학습규칙의 구현에 관한 연구 (A Study on the Implementation of Modified Hybrid Learning Rule)

  • 송도선;김석동;이행세
    • 전자공학회논문지B
    • /
    • 제31B권12호
    • /
    • pp.116-123
    • /
    • 1994
  • A modified Hybrid learning rule(MHLR) is proposed, which is derived from combining the Back Propagation algorithm that is known as an excellent classifier with modified Hebbian by changing the orginal Hebbian which is a good feature extractor. The network architecture of MHLR is multi-layered neural network. The weights of MHLR are calculated from sum of the weight of BP and the weight of modified Hebbian between input layer and higgen layer and from the weight of BP between gidden layer and output layer. To evaluate the performance, BP, MHLR and the proposed Hybrid learning rule (HLR) are simulated by Monte Carlo method. As the result, MHLR is the best in recognition rate and HLR is the second. In learning speed, HLR and MHLR are much the same, while BP is relatively slow.

  • PDF

Mechanical properties of Al/Al2O3 and Al/B4C composites

  • Pandey, Vinod K.;Patel, Badri P.;Guruprasad, Siddalingappa
    • Advances in materials Research
    • /
    • 제5권4호
    • /
    • pp.263-277
    • /
    • 2016
  • Mechanical properties of $Al/Al_2O_3$ and $Al/B_4C$ composites prepared through powder metallurgy are estimated up to 50% $Al_2O_3$ and 35% $B_4C$ weight fractions using micromechanics models and experiments. The experimental Young's modulus up to 0.40 weight fraction of ceramic is found to lie closely between Ravichandran's/Hashin-Shtrikman lower/upper bounds, and close to self consistent method/Miller and Lannutti method/modified rule of mixture/fuzzy logic method single value predictions. Measured Poisson's ratio lies between rule of mixture/Ravichandran lower and upper bound/modified Ravichandran upper bounds. Experimental Charpy energy lies between Hopkin-chamis method/equivalent charpy energy/Ravichandran lower limit up to 20%, and close to the reciprocal rule of mixture for higher $Al_2O_3$ content. Rockwell hardness (RB) and Micro-hardness of $Al/Al_2O_3$ are closer to modified rule of mixture predictions.

텔타규칙을 이용한 다단계 신경회로망 컴퓨터:Recognitron III (Multilayer Neural Network Using Delta Rule: Recognitron III)

  • 김춘석;박충규;이기한;황희영
    • 대한전기학회논문지
    • /
    • 제40권2호
    • /
    • pp.224-233
    • /
    • 1991
  • The multilayer expanson of single layer NN (Neural Network) was needed to solve the linear seperability problem as shown by the classic example using the XOR function. The EBP (Error Back Propagation ) learning rule is often used in multilayer Neural Networks, but it is not without its faults: 1)D.Rimmelhart expanded the Delta Rule but there is a problem in obtaining Ca from the linear combination of the Weight matrix N between the hidden layer and the output layer and H, wich is the result of another linear combination between the input pattern and the Weight matrix M between the input layer and the hidden layer. 2) Even if using the difference between Ca and Da to adjust the values of the Weight matrix N between the hidden layer and the output layer may be valid is correct, but using the same value to adjust the Weight matrixd M between the input layer and the hidden layer is wrong. Recognitron III was proposed to solve these faults. According to simulation results, since Recognitron III does not learn the three layer NN itself, but divides it into several single layer NNs and learns these with learning patterns, the learning time is 32.5 to 72.2 time faster than EBP NN one. The number of patterns learned in a EBP NN with n input and output cells and n+1 hidden cells are 2**n, but n in Recognitron III of the same size. [5] In the case of pattern generalization, however, EBP NN is less than Recognitron III.

  • PDF

The Study on Inconsistent Rule Based Fuzzy Logic Control using Neural Network

  • Cho, Jae-Soo;Park, Dong-Jo;Z. Bien
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.145-150
    • /
    • 1997
  • In this paper is studied a method of fuzzy logic control based on possibly inconsistent if-then rules representing uncertain knowledge or imprecise data. In most cases of practical applications adopting fuzzy if-then rule bases, inconsistent rules have been considered as ill-defined rules and, thus, not allowed to be in the same rule base. Note, however, that, in representing uncertain knowledge by using fuzzy if-then rules, the knowledge sometimes can not be represented in literally consistent if-then rules. In this regard, when it is hard to obtain consistent rule base, we propose the weighted rule base fuzzy logic control depending on output performance using neural network and we will derive the weight update algorithm. Computer simulations show the proposed method has good performance to deal with the inconsistent rule base fuzzy logic control. And we discuss the real application problems.

  • PDF

사용자 웹 사이트 방문 시간을 고려한 연관 규칙 (Association Rule by Considering Users Web Site Visiting Time)

  • 강형창;김철수;이동철
    • 산업경영시스템학회지
    • /
    • 제29권2호
    • /
    • pp.104-109
    • /
    • 2006
  • We can offer suitable information to users analyzing the pattern of users. An association rule is one of data mining techniques which can discover the pattern. We use an association rule which considers the web page visiting time and we should the pattern analyse of users. The offered method puts the weights in Web page visiting time of the user and produces an association rule. Weight is web page visiting time unit divide to total of web page visiting time. We offer rather meaningful result the association rule by Apriori algorithm. This method that proposes in the paper offers rather meaningful result Apriori algorithm

Representing Fuzzy, Uncertain Evidences and Confidence Propagation for Rule-Based System

  • Zhang, Tailing
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.1254-1263
    • /
    • 1993
  • Representing knowledge uncertainty , aggregating evidence confidences , and propagation uncertainties are three key elements that effect the ability of a rule-based expert system to represent domains with uncertainty . Fuzzy set theory provide a good mathematical tool for representing the vagueness associated with a variable when , as the condition of a rule , it only partially corresponds to the input data. However, the aggregation of ANDed and Ored confidences is not as simple as the intersection and union operators defined for fuzzy set membership. There is, in fact, a certain degree of compensation that occurs when an expert aggregates confidences associated with compound evidence . Further, expert often consider individual evidences to be varying importance , or weight , in their support for a conclusion. This paper presents a flexible approach for evaluating evidence and conclusion confidences. Evidences may be represented as fuzzy or nonfuzzy variables with as associat d degree of certainty . different weight can also be associated degree of certainty. Different weights can also be assigned to the individual condition in determining the confidence of compound evidence . Conclusion confidence is calculated using a modified approach combining the evidence confidence and a rule strength. The techniques developed offer a flexible framework for representing knowledge and propagating uncertainties. This framework has the potention to reflect human aggregation of uncertain information more accurately than simple minimum and maximum operator do.

  • PDF