1 |
Tamura, I., Tomata, Y. and Ozawa, H. (1973), "Strength and ductility of Fe-Ni-C alloys composed of austenite and martensite with various strengths", Proceedings of the 3rd International Conference of Strength of Materials and Alloys, Cambridge, U.K., August.
|
2 |
Tilbrook, M.T., Moon, R.J. and Hoffman, M. (2005), "On the mechanical properties of alumina-epoxy with interpenetrating network structure", Mater. Sci. Eng., 399(1-2), 170-178.
DOI
|
3 |
Upadhyay, A., Beniwal, R.S. and Singh, R. (2012), "Elastic properties of Al2O3-NiAl: A modified version of Hashin-Shtrikman bounds", Continuum. Mech. Thermodyn., 24(1), 257-266.
DOI
|
4 |
Voigt, W. (1989), "Uber die beziehung zwischen den beiden elastizitatskonstanten isotroper korper", Wied. Ann., 38, 573-587.
|
5 |
Wakashima, K. and Tsukmoto, H. (1990), "Micromechanical approach to the thermo mechanics of ceramic-metal gradient material", Prceedings of the 1st International Symposium on Functionally Gradient Materials, The Functionally Graded Forum Series, Japan.
|
6 |
Zimmerman, R.W. (1992), "Hashin-Shtrikman bounds on the poisson's ratio of composite materials", Mech. Res. Commun., 19(6), 563-569.
DOI
|
7 |
ASTM Standard C1259 (1998), Standard Test Method for Dynamic Young's Modulus, Shear Modulus and Poisson's Ratio for Advanced Ceramics by Impulse Excitation of Vibration, Philadelphia, U.S.A.
|
8 |
Atri, R.R., Ravichandran, K.S. and Jha, S.K. (1999), "Elastic properties of in-situ processed Ti-TiB composites measured by impulse excitation of vibration", Mater. Sci. Eng., 271(1), 150-159.
DOI
|
9 |
Budiansky, B. (1965), "On the elastic moduli of some heterogeneous materials", J. Mech. Phys. Solid., 13(4), 223-227.
DOI
|
10 |
Budiansky, B. (1987), "A new approach to the application of Mori-Tanaka's theory in composite materials", Mech. Mater., 6(2), 147-157.
DOI
|
11 |
Cannillo, V., Manfredini, T. and Monstorsi, M. (2006), "Microstructure based modeling and experimental investigation in glass-alumina functionally graded materials", J. Eur. Ceram. Soc., 26(15), 3067-3073.
DOI
|
12 |
Dalgleish, B.J., Lu, M.C. and Evans, A.G. (1998), "The strength of ceramics bonded with metals", Acta Metallurg., 36(8), 2029-2035.
DOI
|
13 |
Castro, R.R., Wetherhold, R.C. and Kelestemur, M.H. (2002), "Microstructure and mechanical behavior of functionally graded Al A359/SiC composite", Mater. Sci. Eng., 323(1), 445-456.
DOI
|
14 |
Chegenizadeh, A., Ghadimi B., Nikraz, H. and Simsek, M. (2014), "A novel two-dimensional approach to modeling functionally graded beams resting on a soil medium", Struct. Eng. Mech., 51(5), 727-741.
DOI
|
15 |
Chmielewski, M., Nosewicz, S., Pietrzak, K., Rojek, J., Strojny, N.A., Mackiewicz, S. and Dutkiewicz, J. (2014), "Sintering behavior and mechanical properties of NiAl, and NiAl- composites", J. Mater. Eng. Perform., 23(11), 3875-3886.
DOI
|
16 |
Gibson, R.F. (1994), Principles of Composite Materials Mechanics, McGraw-Hill, New York, U.S.A.
|
17 |
Donnish, V., Reynaud, S. and Haber, R.A. (2011), "Boron carbide: Structure, properties, and stability under stress", J. Am. Ceram. Soc., 94(11), 3605-3628.
DOI
|
18 |
Ezatpour, H.R., Torabi, P.M. and Sajjadi, S.A. (2013), "Microstructure and mechanical properties of extruded Al/ composites fabricated by stir-casting process", Trans. Nonferr. Metals Soc. China, 23(5), 1262-1268.
DOI
|
19 |
Gaharwar, V.S. and Umashankar, V. (2014), "The characterization and behavior of Al reinforced with fabricated by powder metallurgy", J. Chem. Technol. Res., 6(6), 3272-3275.
|
20 |
Hashin, Z. and Shtrikman, S. (1963), "A variational approach to the theory of the elastic behaviour of multiphase materials", J. Mech. Phys. Solid., 11(2), 127-140.
DOI
|
21 |
Hill, R. (1965), "A self-consistent mechanics of composite materials", J. Mech. Phys. Solid., 13(4), 213-222.
DOI
|
22 |
Hsieh, C.L., Tuan, W.H. and Wu, T.T. (2004), "Elastic behavior of a model two-phase material", J. Eur. Ceram. Soc., 24, 3789-3793.
DOI
|
23 |
Hirano, T., Teraki, J. and Yamanda, T. (1991), "Application of fuzzy theory to the design of functionally gradient materials", Proceedings of the 11th International Conference on Structural Mechanics in Reactor Technology, Tokyo, Japan, August.
|
24 |
Hirano, T., Teraki, J., and Yamanda, T. (1990), "On the design of functionally gradient materials", Proceedings of the 1st International Symposium on Functionally Gradient Materials, Sendai, Japan.
|
25 |
Hsieh, C.L. and Tuan, W.H. (2005), "Elastic properties of ceramic-metal particulate composites", Mater. Sci. Eng., 393(1), 133-139.
DOI
|
26 |
Hsieh, C.L. and Tuan, W.H. (2005), "Poisson's ratio of two-phase composites", Mater. Sci. Eng., 396(1), 202-205.
DOI
|
27 |
Hsieh, C.L. and Tuan, W.H. (2006), "Elastic and thermal expansion behavior of two-phase composites", Mater. Sci. Eng., 425(1), 349-360.
DOI
|
28 |
Joseph, R.Z. (1995), "Functionally graded materials: Choice of micromechanics model and limitations in property variation", Compos. Eng., 5(7), 807-819.
DOI
|
29 |
Kapuria, S., Bhattacharyya, M. and Kumar, A.N. (2008), "Theoretical modeling and experimental validation of thermal response of metal-ceramic functionally graded beams", J. Therm. Stresses, 31(8), 759-787.
DOI
|
30 |
Kerner, E.H. (1956), "The elastic and thermo elastic properties of composite media", Proceedings of the Physical Society, 69(8), 808-813.
DOI
|
31 |
Kim, J. and Muliana, A. (2010), "Time-dependent and inelastic behaviours of fiber- and particle hybrid composites", Sruct. Eng. Mech., 34(4), 525-539.
DOI
|
32 |
Prabhu, T.N., Demappa, T., Harish, V. and Prashantha, K. (2015), "Synergistic effect of clay and polypropylene short fibers in epoxy based terminal composite hybrids", Adv. Mater. Res., 4(2), 97-111.
DOI
|
33 |
Kothari, K., Radhakrishnan, R., Sudarshan, T.S. and Wereley, N.M. (2012), "Characterization of rapidly consolidated Y-TiAl", Adv. Mater. Res., 1, 51-74.
DOI
|
34 |
Mahendran, G., Balasubramanium, V. and Senthilvelan, T. (2012), "Mechanical and metallurgical properties of diffusion bonded AA2024 Al and AZ31B Mg", Adv. Mater. Res., 1(2), 147-160.
DOI
|
35 |
Miller, D.P., Lannutti, J.J. and Noebe, R.D. (1993), "Fabrication and properties of functionally graded NiAl/ composite", J. Mater. Res., 8(8), 2004-2013.
DOI
|
36 |
Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with mis-fitting inclusions", Acta Metallurg., 21(5), 571-574.
DOI
|
37 |
Nan, C.W., Yuan, R.Z. and Zhang, L.M. (1993), "The physics of metals/ceramics functionally gradient materials", Ceram. Trans. Am. Ceram. Soc. Westerv.OH, 34, 75-82.
|
38 |
Ravichandran, K.S. (1994), "Elastic properties of two phase composites", J. Am. Ceram. Soc., 77(5), 1178-1184.
DOI
|
39 |
Rousseau, C.E. and Tippur, H.V. (2002), "Evaluation of crack tip fields and stress intensity factors in functionally graded elastic materials: cracks parallel to elastic gradient", J. Fract., 114(1), 87-112.
DOI
|
40 |
Sajjadi, S.A., Ezatpour, H.R. and Torabi, P.M. (2012), "Comparison of microstructure and mechanical properties of A356 aluminium alloy/ composites fabricated by stir and compo-casting processes", Mater. Des., 34, 106-111.
DOI
|
41 |
Sasaki, M., Wang, Y. and Hirano, T. (1989), "Design of SiC/C functionally gradient materials and its preparation by chemical vapor deposition", J. Ceram. Soc., 97(5), 539-534.
DOI
|
42 |
Srivatsan, T.S., Manigandan, K., Godbole, C., Paramsothy, M. and Gupta, M. (2012), "The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel", Adv. Mater. Res., 1(3), 169-182.
DOI
|