Browse > Article
http://dx.doi.org/10.12989/amr.2016.5.4.263

Mechanical properties of Al/Al2O3 and Al/B4C composites  

Pandey, Vinod K. (Research and Development Establishment (Engineers))
Patel, Badri P. (Applied Mechanics Department, Indian Institute of Technology Delhi)
Guruprasad, Siddalingappa (DRDO HQ)
Publication Information
Advances in materials Research / v.5, no.4, 2016 , pp. 263-277 More about this Journal
Abstract
Mechanical properties of $Al/Al_2O_3$ and $Al/B_4C$ composites prepared through powder metallurgy are estimated up to 50% $Al_2O_3$ and 35% $B_4C$ weight fractions using micromechanics models and experiments. The experimental Young's modulus up to 0.40 weight fraction of ceramic is found to lie closely between Ravichandran's/Hashin-Shtrikman lower/upper bounds, and close to self consistent method/Miller and Lannutti method/modified rule of mixture/fuzzy logic method single value predictions. Measured Poisson's ratio lies between rule of mixture/Ravichandran lower and upper bound/modified Ravichandran upper bounds. Experimental Charpy energy lies between Hopkin-chamis method/equivalent charpy energy/Ravichandran lower limit up to 20%, and close to the reciprocal rule of mixture for higher $Al_2O_3$ content. Rockwell hardness (RB) and Micro-hardness of $Al/Al_2O_3$ are closer to modified rule of mixture predictions.
Keywords
mechanical properties; hardness; micro-mechanics; powder processing; functionally graded material;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Tamura, I., Tomata, Y. and Ozawa, H. (1973), "Strength and ductility of Fe-Ni-C alloys composed of austenite and martensite with various strengths", Proceedings of the 3rd International Conference of Strength of Materials and Alloys, Cambridge, U.K., August.
2 Tilbrook, M.T., Moon, R.J. and Hoffman, M. (2005), "On the mechanical properties of alumina-epoxy with interpenetrating network structure", Mater. Sci. Eng., 399(1-2), 170-178.   DOI
3 Upadhyay, A., Beniwal, R.S. and Singh, R. (2012), "Elastic properties of Al2O3-NiAl: A modified version of Hashin-Shtrikman bounds", Continuum. Mech. Thermodyn., 24(1), 257-266.   DOI
4 Voigt, W. (1989), "Uber die beziehung zwischen den beiden elastizitatskonstanten isotroper korper", Wied. Ann., 38, 573-587.
5 Wakashima, K. and Tsukmoto, H. (1990), "Micromechanical approach to the thermo mechanics of ceramic-metal gradient material", Prceedings of the 1st International Symposium on Functionally Gradient Materials, The Functionally Graded Forum Series, Japan.
6 Zimmerman, R.W. (1992), "Hashin-Shtrikman bounds on the poisson's ratio of composite materials", Mech. Res. Commun., 19(6), 563-569.   DOI
7 ASTM Standard C1259 (1998), Standard Test Method for Dynamic Young's Modulus, Shear Modulus and Poisson's Ratio for Advanced Ceramics by Impulse Excitation of Vibration, Philadelphia, U.S.A.
8 Atri, R.R., Ravichandran, K.S. and Jha, S.K. (1999), "Elastic properties of in-situ processed Ti-TiB composites measured by impulse excitation of vibration", Mater. Sci. Eng., 271(1), 150-159.   DOI
9 Budiansky, B. (1965), "On the elastic moduli of some heterogeneous materials", J. Mech. Phys. Solid., 13(4), 223-227.   DOI
10 Budiansky, B. (1987), "A new approach to the application of Mori-Tanaka's theory in composite materials", Mech. Mater., 6(2), 147-157.   DOI
11 Cannillo, V., Manfredini, T. and Monstorsi, M. (2006), "Microstructure based modeling and experimental investigation in glass-alumina functionally graded materials", J. Eur. Ceram. Soc., 26(15), 3067-3073.   DOI
12 Dalgleish, B.J., Lu, M.C. and Evans, A.G. (1998), "The strength of ceramics bonded with metals", Acta Metallurg., 36(8), 2029-2035.   DOI
13 Castro, R.R., Wetherhold, R.C. and Kelestemur, M.H. (2002), "Microstructure and mechanical behavior of functionally graded Al A359/SiC composite", Mater. Sci. Eng., 323(1), 445-456.   DOI
14 Chegenizadeh, A., Ghadimi B., Nikraz, H. and Simsek, M. (2014), "A novel two-dimensional approach to modeling functionally graded beams resting on a soil medium", Struct. Eng. Mech., 51(5), 727-741.   DOI
15 Chmielewski, M., Nosewicz, S., Pietrzak, K., Rojek, J., Strojny, N.A., Mackiewicz, S. and Dutkiewicz, J. (2014), "Sintering behavior and mechanical properties of NiAl, $Al_2O_3$ and NiAl-$Al_2O_3$ composites", J. Mater. Eng. Perform., 23(11), 3875-3886.   DOI
16 Gibson, R.F. (1994), Principles of Composite Materials Mechanics, McGraw-Hill, New York, U.S.A.
17 Donnish, V., Reynaud, S. and Haber, R.A. (2011), "Boron carbide: Structure, properties, and stability under stress", J. Am. Ceram. Soc., 94(11), 3605-3628.   DOI
18 Ezatpour, H.R., Torabi, P.M. and Sajjadi, S.A. (2013), "Microstructure and mechanical properties of extruded Al/$Al_2O_3$ composites fabricated by stir-casting process", Trans. Nonferr. Metals Soc. China, 23(5), 1262-1268.   DOI
19 Gaharwar, V.S. and Umashankar, V. (2014), "The characterization and behavior of Al reinforced with $Al_2O_3$ fabricated by powder metallurgy", J. Chem. Technol. Res., 6(6), 3272-3275.
20 Hashin, Z. and Shtrikman, S. (1963), "A variational approach to the theory of the elastic behaviour of multiphase materials", J. Mech. Phys. Solid., 11(2), 127-140.   DOI
21 Hill, R. (1965), "A self-consistent mechanics of composite materials", J. Mech. Phys. Solid., 13(4), 213-222.   DOI
22 Hsieh, C.L., Tuan, W.H. and Wu, T.T. (2004), "Elastic behavior of a model two-phase material", J. Eur. Ceram. Soc., 24, 3789-3793.   DOI
23 Hirano, T., Teraki, J. and Yamanda, T. (1991), "Application of fuzzy theory to the design of functionally gradient materials", Proceedings of the 11th International Conference on Structural Mechanics in Reactor Technology, Tokyo, Japan, August.
24 Hirano, T., Teraki, J., and Yamanda, T. (1990), "On the design of functionally gradient materials", Proceedings of the 1st International Symposium on Functionally Gradient Materials, Sendai, Japan.
25 Hsieh, C.L. and Tuan, W.H. (2005), "Elastic properties of ceramic-metal particulate composites", Mater. Sci. Eng., 393(1), 133-139.   DOI
26 Hsieh, C.L. and Tuan, W.H. (2005), "Poisson's ratio of two-phase composites", Mater. Sci. Eng., 396(1), 202-205.   DOI
27 Hsieh, C.L. and Tuan, W.H. (2006), "Elastic and thermal expansion behavior of two-phase composites", Mater. Sci. Eng., 425(1), 349-360.   DOI
28 Joseph, R.Z. (1995), "Functionally graded materials: Choice of micromechanics model and limitations in property variation", Compos. Eng., 5(7), 807-819.   DOI
29 Kapuria, S., Bhattacharyya, M. and Kumar, A.N. (2008), "Theoretical modeling and experimental validation of thermal response of metal-ceramic functionally graded beams", J. Therm. Stresses, 31(8), 759-787.   DOI
30 Kerner, E.H. (1956), "The elastic and thermo elastic properties of composite media", Proceedings of the Physical Society, 69(8), 808-813.   DOI
31 Kim, J. and Muliana, A. (2010), "Time-dependent and inelastic behaviours of fiber- and particle hybrid composites", Sruct. Eng. Mech., 34(4), 525-539.   DOI
32 Prabhu, T.N., Demappa, T., Harish, V. and Prashantha, K. (2015), "Synergistic effect of clay and polypropylene short fibers in epoxy based terminal composite hybrids", Adv. Mater. Res., 4(2), 97-111.   DOI
33 Kothari, K., Radhakrishnan, R., Sudarshan, T.S. and Wereley, N.M. (2012), "Characterization of rapidly consolidated Y-TiAl", Adv. Mater. Res., 1, 51-74.   DOI
34 Mahendran, G., Balasubramanium, V. and Senthilvelan, T. (2012), "Mechanical and metallurgical properties of diffusion bonded AA2024 Al and AZ31B Mg", Adv. Mater. Res., 1(2), 147-160.   DOI
35 Miller, D.P., Lannutti, J.J. and Noebe, R.D. (1993), "Fabrication and properties of functionally graded NiAl/$Al_2O_3$ composite", J. Mater. Res., 8(8), 2004-2013.   DOI
36 Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with mis-fitting inclusions", Acta Metallurg., 21(5), 571-574.   DOI
37 Nan, C.W., Yuan, R.Z. and Zhang, L.M. (1993), "The physics of metals/ceramics functionally gradient materials", Ceram. Trans. Am. Ceram. Soc. Westerv.OH, 34, 75-82.
38 Ravichandran, K.S. (1994), "Elastic properties of two phase composites", J. Am. Ceram. Soc., 77(5), 1178-1184.   DOI
39 Rousseau, C.E. and Tippur, H.V. (2002), "Evaluation of crack tip fields and stress intensity factors in functionally graded elastic materials: cracks parallel to elastic gradient", J. Fract., 114(1), 87-112.   DOI
40 Sajjadi, S.A., Ezatpour, H.R. and Torabi, P.M. (2012), "Comparison of microstructure and mechanical properties of A356 aluminium alloy/$Al_2O_3$ composites fabricated by stir and compo-casting processes", Mater. Des., 34, 106-111.   DOI
41 Sasaki, M., Wang, Y. and Hirano, T. (1989), "Design of SiC/C functionally gradient materials and its preparation by chemical vapor deposition", J. Ceram. Soc., 97(5), 539-534.   DOI
42 Srivatsan, T.S., Manigandan, K., Godbole, C., Paramsothy, M. and Gupta, M. (2012), "The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel", Adv. Mater. Res., 1(3), 169-182.   DOI