DOI QR코드

DOI QR Code

Mechanical properties of Al/Al2O3 and Al/B4C composites

  • Pandey, Vinod K. (Research and Development Establishment (Engineers)) ;
  • Patel, Badri P. (Applied Mechanics Department, Indian Institute of Technology Delhi) ;
  • Guruprasad, Siddalingappa (DRDO HQ)
  • Received : 2016.08.26
  • Accepted : 2017.01.13
  • Published : 2016.12.25

Abstract

Mechanical properties of $Al/Al_2O_3$ and $Al/B_4C$ composites prepared through powder metallurgy are estimated up to 50% $Al_2O_3$ and 35% $B_4C$ weight fractions using micromechanics models and experiments. The experimental Young's modulus up to 0.40 weight fraction of ceramic is found to lie closely between Ravichandran's/Hashin-Shtrikman lower/upper bounds, and close to self consistent method/Miller and Lannutti method/modified rule of mixture/fuzzy logic method single value predictions. Measured Poisson's ratio lies between rule of mixture/Ravichandran lower and upper bound/modified Ravichandran upper bounds. Experimental Charpy energy lies between Hopkin-chamis method/equivalent charpy energy/Ravichandran lower limit up to 20%, and close to the reciprocal rule of mixture for higher $Al_2O_3$ content. Rockwell hardness (RB) and Micro-hardness of $Al/Al_2O_3$ are closer to modified rule of mixture predictions.

Keywords

References

  1. ASTM Standard C1259 (1998), Standard Test Method for Dynamic Young's Modulus, Shear Modulus and Poisson's Ratio for Advanced Ceramics by Impulse Excitation of Vibration, Philadelphia, U.S.A.
  2. Atri, R.R., Ravichandran, K.S. and Jha, S.K. (1999), "Elastic properties of in-situ processed Ti-TiB composites measured by impulse excitation of vibration", Mater. Sci. Eng., 271(1), 150-159. https://doi.org/10.1016/S0921-5093(99)00198-7
  3. Budiansky, B. (1965), "On the elastic moduli of some heterogeneous materials", J. Mech. Phys. Solid., 13(4), 223-227. https://doi.org/10.1016/0022-5096(65)90011-6
  4. Budiansky, B. (1987), "A new approach to the application of Mori-Tanaka's theory in composite materials", Mech. Mater., 6(2), 147-157. https://doi.org/10.1016/0167-6636(87)90005-6
  5. Cannillo, V., Manfredini, T. and Monstorsi, M. (2006), "Microstructure based modeling and experimental investigation in glass-alumina functionally graded materials", J. Eur. Ceram. Soc., 26(15), 3067-3073. https://doi.org/10.1016/j.jeurceramsoc.2005.10.003
  6. Castro, R.R., Wetherhold, R.C. and Kelestemur, M.H. (2002), "Microstructure and mechanical behavior of functionally graded Al A359/SiC composite", Mater. Sci. Eng., 323(1), 445-456. https://doi.org/10.1016/S0921-5093(01)01400-9
  7. Chegenizadeh, A., Ghadimi B., Nikraz, H. and Simsek, M. (2014), "A novel two-dimensional approach to modeling functionally graded beams resting on a soil medium", Struct. Eng. Mech., 51(5), 727-741. https://doi.org/10.12989/sem.2014.51.5.727
  8. Chmielewski, M., Nosewicz, S., Pietrzak, K., Rojek, J., Strojny, N.A., Mackiewicz, S. and Dutkiewicz, J. (2014), "Sintering behavior and mechanical properties of NiAl, $Al_2O_3$ and NiAl-$Al_2O_3$ composites", J. Mater. Eng. Perform., 23(11), 3875-3886. https://doi.org/10.1007/s11665-014-1189-z
  9. Dalgleish, B.J., Lu, M.C. and Evans, A.G. (1998), "The strength of ceramics bonded with metals", Acta Metallurg., 36(8), 2029-2035. https://doi.org/10.1016/0001-6160(88)90304-5
  10. Donnish, V., Reynaud, S. and Haber, R.A. (2011), "Boron carbide: Structure, properties, and stability under stress", J. Am. Ceram. Soc., 94(11), 3605-3628. https://doi.org/10.1111/j.1551-2916.2011.04865.x
  11. Ezatpour, H.R., Torabi, P.M. and Sajjadi, S.A. (2013), "Microstructure and mechanical properties of extruded Al/$Al_2O_3$ composites fabricated by stir-casting process", Trans. Nonferr. Metals Soc. China, 23(5), 1262-1268. https://doi.org/10.1016/S1003-6326(13)62591-1
  12. Gaharwar, V.S. and Umashankar, V. (2014), "The characterization and behavior of Al reinforced with $Al_2O_3$ fabricated by powder metallurgy", J. Chem. Technol. Res., 6(6), 3272-3275.
  13. Gibson, R.F. (1994), Principles of Composite Materials Mechanics, McGraw-Hill, New York, U.S.A.
  14. Hashin, Z. and Shtrikman, S. (1963), "A variational approach to the theory of the elastic behaviour of multiphase materials", J. Mech. Phys. Solid., 11(2), 127-140. https://doi.org/10.1016/0022-5096(63)90060-7
  15. Hill, R. (1965), "A self-consistent mechanics of composite materials", J. Mech. Phys. Solid., 13(4), 213-222. https://doi.org/10.1016/0022-5096(65)90010-4
  16. Hirano, T., Teraki, J. and Yamanda, T. (1991), "Application of fuzzy theory to the design of functionally gradient materials", Proceedings of the 11th International Conference on Structural Mechanics in Reactor Technology, Tokyo, Japan, August.
  17. Hirano, T., Teraki, J., and Yamanda, T. (1990), "On the design of functionally gradient materials", Proceedings of the 1st International Symposium on Functionally Gradient Materials, Sendai, Japan.
  18. Hsieh, C.L. and Tuan, W.H. (2005), "Elastic properties of ceramic-metal particulate composites", Mater. Sci. Eng., 393(1), 133-139. https://doi.org/10.1016/j.msea.2004.10.009
  19. Hsieh, C.L. and Tuan, W.H. (2005), "Poisson's ratio of two-phase composites", Mater. Sci. Eng., 396(1), 202-205. https://doi.org/10.1016/j.msea.2005.01.029
  20. Hsieh, C.L. and Tuan, W.H. (2006), "Elastic and thermal expansion behavior of two-phase composites", Mater. Sci. Eng., 425(1), 349-360. https://doi.org/10.1016/j.msea.2006.03.073
  21. Hsieh, C.L., Tuan, W.H. and Wu, T.T. (2004), "Elastic behavior of a model two-phase material", J. Eur. Ceram. Soc., 24, 3789-3793. https://doi.org/10.1016/j.jeurceramsoc.2004.02.002
  22. Joseph, R.Z. (1995), "Functionally graded materials: Choice of micromechanics model and limitations in property variation", Compos. Eng., 5(7), 807-819. https://doi.org/10.1016/0961-9526(95)00031-H
  23. Kapuria, S., Bhattacharyya, M. and Kumar, A.N. (2008), "Theoretical modeling and experimental validation of thermal response of metal-ceramic functionally graded beams", J. Therm. Stresses, 31(8), 759-787. https://doi.org/10.1080/01495730802194292
  24. Kerner, E.H. (1956), "The elastic and thermo elastic properties of composite media", Proceedings of the Physical Society, 69(8), 808-813. https://doi.org/10.1088/0370-1301/69/8/305
  25. Kim, J. and Muliana, A. (2010), "Time-dependent and inelastic behaviours of fiber- and particle hybrid composites", Sruct. Eng. Mech., 34(4), 525-539. https://doi.org/10.12989/sem.2010.34.4.525
  26. Kothari, K., Radhakrishnan, R., Sudarshan, T.S. and Wereley, N.M. (2012), "Characterization of rapidly consolidated Y-TiAl", Adv. Mater. Res., 1, 51-74. https://doi.org/10.12989/amr.2012.1.1.051
  27. Mahendran, G., Balasubramanium, V. and Senthilvelan, T. (2012), "Mechanical and metallurgical properties of diffusion bonded AA2024 Al and AZ31B Mg", Adv. Mater. Res., 1(2), 147-160. https://doi.org/10.12989/amr.2012.1.2.147
  28. Miller, D.P., Lannutti, J.J. and Noebe, R.D. (1993), "Fabrication and properties of functionally graded NiAl/$Al_2O_3$ composite", J. Mater. Res., 8(8), 2004-2013. https://doi.org/10.1557/JMR.1993.2004
  29. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with mis-fitting inclusions", Acta Metallurg., 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  30. Nan, C.W., Yuan, R.Z. and Zhang, L.M. (1993), "The physics of metals/ceramics functionally gradient materials", Ceram. Trans. Am. Ceram. Soc. Westerv.OH, 34, 75-82.
  31. Prabhu, T.N., Demappa, T., Harish, V. and Prashantha, K. (2015), "Synergistic effect of clay and polypropylene short fibers in epoxy based terminal composite hybrids", Adv. Mater. Res., 4(2), 97-111. https://doi.org/10.12989/amr.2015.4.2.097
  32. Ravichandran, K.S. (1994), "Elastic properties of two phase composites", J. Am. Ceram. Soc., 77(5), 1178-1184. https://doi.org/10.1111/j.1151-2916.1994.tb05390.x
  33. Rousseau, C.E. and Tippur, H.V. (2002), "Evaluation of crack tip fields and stress intensity factors in functionally graded elastic materials: cracks parallel to elastic gradient", J. Fract., 114(1), 87-112. https://doi.org/10.1023/A:1014889628080
  34. Sajjadi, S.A., Ezatpour, H.R. and Torabi, P.M. (2012), "Comparison of microstructure and mechanical properties of A356 aluminium alloy/$Al_2O_3$ composites fabricated by stir and compo-casting processes", Mater. Des., 34, 106-111. https://doi.org/10.1016/j.matdes.2011.07.037
  35. Sasaki, M., Wang, Y. and Hirano, T. (1989), "Design of SiC/C functionally gradient materials and its preparation by chemical vapor deposition", J. Ceram. Soc., 97(5), 539-534. https://doi.org/10.2109/jcersj.97.539
  36. Srivatsan, T.S., Manigandan, K., Godbole, C., Paramsothy, M. and Gupta, M. (2012), "The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel", Adv. Mater. Res., 1(3), 169-182. https://doi.org/10.12989/amr.2012.1.3.169
  37. Tamura, I., Tomata, Y. and Ozawa, H. (1973), "Strength and ductility of Fe-Ni-C alloys composed of austenite and martensite with various strengths", Proceedings of the 3rd International Conference of Strength of Materials and Alloys, Cambridge, U.K., August.
  38. Tilbrook, M.T., Moon, R.J. and Hoffman, M. (2005), "On the mechanical properties of alumina-epoxy with interpenetrating network structure", Mater. Sci. Eng., 399(1-2), 170-178. https://doi.org/10.1016/j.msea.2004.10.004
  39. Upadhyay, A., Beniwal, R.S. and Singh, R. (2012), "Elastic properties of Al2O3-NiAl: A modified version of Hashin-Shtrikman bounds", Continuum. Mech. Thermodyn., 24(1), 257-266. https://doi.org/10.1007/s00161-012-0237-x
  40. Voigt, W. (1989), "Uber die beziehung zwischen den beiden elastizitatskonstanten isotroper korper", Wied. Ann., 38, 573-587.
  41. Wakashima, K. and Tsukmoto, H. (1990), "Micromechanical approach to the thermo mechanics of ceramic-metal gradient material", Prceedings of the 1st International Symposium on Functionally Gradient Materials, The Functionally Graded Forum Series, Japan.
  42. Zimmerman, R.W. (1992), "Hashin-Shtrikman bounds on the poisson's ratio of composite materials", Mech. Res. Commun., 19(6), 563-569. https://doi.org/10.1016/0093-6413(92)90085-O