• Title/Summary/Keyword: Rule mining

Search Result 481, Processing Time 0.023 seconds

Anti-Fraud System for Credit Card By Using Hybrid Technique (Hybrid 기법을 적용한 효율적인 신용카드판단시스템)

  • 조문배;박길흠
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.5
    • /
    • pp.25-32
    • /
    • 2004
  • An anti-fraud system that utilizes association rules of fraud as well as AFS (Anti Fraud System) for credit card payments in e-commerce is proposed. The association rules are found by applying the data mining algorithm to millions of transaction records that have been generated as a result of orders on goods through the Internet. When a customer begins to process an order by using transaction components of a secure messaging protocol, the degree of risk for the transaction is assessed by using the found rules. More credit information will be requested or the transaction is rejected if it is interpreted as risky.

An Efficient Algorithm for Mining Ranged Association Rules (영역 연관규칙 탐사를 위한 효율적 알고리즘)

  • 조일래
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.2
    • /
    • pp.169-181
    • /
    • 1997
  • Some association rules can have very high confidence in a sub-interval or a subrange of the domain, though not quite high confidence in the whole domain. In this paper, we define a ranged association rule, an association with high confidence worthy of special attention in a sub-domain, and further propose an efficient algorithm which finds out ranged association rules. The proposed algorithm is data-driven method in a sense that hypothetical subranges are built based on data distribution itself. In addition, to avoid redundant database scanning, we devise an effective in-memory data structure, that is collected through single database scanning. The simulation shows that the suggested algorithm has reliable performance at the acceptable time cost in actual application areas.

  • PDF

A Study on Behavior Rule Induction Method of Web User Group using 2-tier Clustering (2-계층 클러스터링을 사용한 웹 사용자 그룹의 행동규칙추출방법에 관한 연구)

  • Hwang, Jun-Won;Song, Doo-Heon;Lee, Chang-Hoon
    • The KIPS Transactions:PartD
    • /
    • v.15D no.1
    • /
    • pp.139-146
    • /
    • 2008
  • It is very important to identify useful web user group and induce their behavior pattern in eCRM domain. Inducing user group with a similar inclination, a reliability of user group decreases because there is an uncertainty in online user data. In this paper, we have applied the 2-tier clustering, which uses the outcome of interaction with data from other tiers. Also we propose a method which induces user behavior pattern from a cluster and compare C4.5 with our method.

An application of datamining approach to CQI using the discharge summary (퇴원요약 데이터베이스를 이용한 데이터마이닝 기법의 CQI 활동에의 황용 방안)

  • 선미옥;채영문;이해종;이선희;강성홍;호승희
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.289-299
    • /
    • 2000
  • This study provides an application of datamining approach to CQI(Continuous Quality Improvement) using the discharge summary. First, we found a process variation in hospital infection rate by SPC (Statistical Process Control) technique. Second, importance of factors influencing hospital infection was inferred through the decision tree analysis which is a classification method in data-mining approach. The most important factor was surgery followed by comorbidity and length of operation. Comorbidity was further divided into age and principal diagnosis and the length of operation was further divided into age and chief complaint. 24 rules of hospital infection were generated by the decision tree analysis. Of these, 9 rules with predictive prover greater than 50% were suggested as guidelines for hospital infection control. The optimum range of target group in hospital infection control were Identified through the information gain summary. Association rule, which is another kind of datamining method, was performed to analyze the relationship between principal diagnosis and comorbidity. The confidence score, which measures the decree of association, between urinary tract infection and causal bacillus was the highest, followed by the score between postoperative wound disruption find postoperative wound infection. This study demonstrated how datamining approach could be used to provide information to support prospective surveillance of hospital infection. The datamining technique can also be applied to various areas fur CQI using other hospital databases.

  • PDF

Implementation of abnormal behavior detection Algorithm and Optimizing the performance of Algorithm (비정상행위 탐지 알고리즘 구현 및 성능 최적화 방안)

  • Shin, Dae-Cheol;Kim, Hong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4553-4562
    • /
    • 2010
  • With developing networks, information security is going to be important and therefore lots of intrusion detection system has been developed. Intrusion detection system has abilities to detect abnormal behavior and unknown intrusions also it can detect intrusions by using patterns studied from various penetration methods. Various algorithms are studying now such as the statistical method for detecting abnormal behavior, extracting abnormal behavior, and developing patterns that can be expected. Etc. This study using clustering of data mining and association rule analyzes detecting areas based on two models and helps design detection system which detecting abnormal behavior, unknown attack, misuse attack in a large network.

Customer Personalized System of eCRM Using Web Log Mining and Rough Set

  • Lee, Jae-Hoon;Chung, Il-Yong;Lee, Sung-Joo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.29-32
    • /
    • 2006
  • In this paper, we propose a customer personalized system that presents the web pages to users which are customized to their individuality. It analyzes the action of users who visit the shopping mall, and preferentially supplies the necessary information to them. When they actually buy some items, it forecasts the users' access pattern to web site and their following purchasable items and improves their web pare on the bases of their individuality. It reasons the relation among the web documents and among the items by using the log data of web server and the purchase information of DB. For reasoning it employs Rough Set, which is a method that searches the association rule and offers most suitable cases by reduces cases. It reasons the web pages by considering the users' access pattern and time by using the web log and reasons the users' purchase pattern by using the purchase information of DB. On the basis of the relation among them, it appends the related web pages to link of users' web pages and displays the inferred goods on users' web pages.

  • PDF

Measurement and Modeling of Job Stress of Electric Overhead Traveling Crane Operators

  • Krishna, Obilisetty B.;Maiti, Jhareswar;Ray, Pradip K.;Samanta, Biswajit;Mandal, Saptarshi;Sarkar, Sobhan
    • Safety and Health at Work
    • /
    • v.6 no.4
    • /
    • pp.279-288
    • /
    • 2015
  • Background: In this study, the measurement of job stress of electric overhead traveling crane operators and quantification of the effects of operator and workplace characteristics on job stress were assessed. Methods: Job stress was measured on five subscales: employee empowerment, role overload, role ambiguity, rule violation, and job hazard. The characteristics of the operators that were studied were age, experience, body weight, and body height. The workplace characteristics considered were hours of exposure, cabin type, cabin feature, and crane height. The proposed methodology included administration of a questionnaire survey to 76 electric overhead traveling crane operators followed by analysis using analysis of variance and a classification and regression tree. Results: The key findings were: (1) the five subscales can be used to measure job stress; (2) employee empowerment was the most significant factor followed by the role overload; (3) workplace characteristics contributed more towards job stress than operator's characteristics; and (4) of the workplace characteristics, crane height was the major contributor. Conclusion: The issues related to crane height and cabin feature can be fixed by providing engineering or foolproof solutions than relying on interventions related to the demographic factors.

Automatic Payload Signature Update System for the Classification of Dynamically Changing Internet Applications

  • Shim, Kyu-Seok;Goo, Young-Hoon;Lee, Dongcheul;Kim, Myung-Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1284-1297
    • /
    • 2019
  • The network environment is presently becoming very increased. Accordingly, the study of traffic classification for network management is becoming difficult. Automatic signature extraction system is a hot topic in the field of traffic classification research. However, existing automatic payload signature generation systems suffer problems such as semi-automatic system, generating of disposable signatures, generating of false-positive signatures and signatures are not kept up to date. Therefore, we provide a fully automatic signature update system that automatically performs all the processes, such as traffic collection, signature generation, signature management and signature verification. The step of traffic collection automatically collects ground-truth traffic through the traffic measurement agent (TMA) and traffic management server (TMS). The step of signature management removes unnecessary signatures. The step of signature generation generates new signatures. Finally, the step of signature verification removes the false-positive signatures. The proposed system can solve the problems of existing systems. The result of this system to a campus network showed that, in the case of four applications, high recall values and low false-positive rates can be maintained.

Anomaly Detection Method Based on The False-Positive Control (과탐지를 제어하는 이상행위 탐지 방법)

  • 조혁현;정희택;김민수;노봉남
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.4
    • /
    • pp.151-159
    • /
    • 2003
  • Internet as being generalized, intrusion detection system is needed to protect computer system from intrusions synthetically. We propose an intrusion detection method to identify and control the contradiction on self-explanation that happen at profiling process of anomaly detection methodology. Because many patterns can be created on profiling process with association method, we present effective application plan through clustering for rules. Finally, we propose similarity function to decide whether anomaly action or not for user pattern using clustered pattern database.

Identifying the Expression Patterns of Depression Based on the Random Forest (랜덤 포레스트 기반 우울증 발현 패턴 도출)

  • Jeon, Hyeon Jin;Jihn, Chang-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.53-64
    • /
    • 2021
  • Depression is one of the most important psychiatric disorders worldwide. Most depression-related data mining and machine learning studies have been conducted to predict the presence of depression or to derive individual risk factors. However, since depression is caused by a combination of various factors, it is necessary to identify the complex relationship between the factors in order to establish effective anti-depression and management measures. In this study, we propose a methodology for identifying and interpreting patterns of depression expressions using the method of deriving random forest rules, where the random forest rule consists of the condition for the manifestation of the depressive pattern and the prediction result of depression when the condition is met. The analysis was carried out by subdividing into 4 groups in consideration of the different depressive patterns according to gender and age. Depression rules derived by the proposed methodology were validated by comparing them with the results of previous studies. Also, through the AUC comparison test, the depression diagnosis performance of the derived rules was evaluated, and it was not different from the performance of the existing PHQ-9 summing method. The significance of this study can be found in that it enabled the interpretation of the complex relationship between depressive factors beyond the existing studies that focused on prediction and deduction of major factors.