1 |
Lisa, M. Sas, K., No. 82 Aid Auditors in Financial Statement Fraud Detection?, University Of Colorado Boulder, DAI-A 58/07, p. 2732, Jan 1998
|
2 |
Charles, C. Steve, S., A Critical Examination of Reengineered Audit Processes and The Likelihood of Detecting Fraud, No.3, pp. 297-310, 2002
|
3 |
Rosset, S. Murad, U. Neumann, E. Idan, Y. and Pinkas, G., Discovery of Fraud Rules for Telecommunications-Challenges and Solutions, ACM Press, New York, USA, pp. 409 - 413, Series- Proceeding-Article, Year of Publication, 1999
DOI
|
4 |
Bonchi, F. Giannotti, F. Mainetto, G. and Pedreschi, D., A classification-based Methodology for Planning Audit Strategies in Fraud Detection, ACM Press New York, NY, USA, pp. 175 - 184, Series-Proceeding-Article Year of Publication, 1999
DOI
|
5 |
J.S. Park, M. Chen, and P.S. Yu., Using a Hash-Based Method with Transaction Trimming for Mining Association Rules, IEEE Transactions on Knowledge and Data Engineering, Vol. 9, No.5, pp.813-825, Sept. 1997.
DOI
ScienceOn
|
6 |
Tse-Hua, Lan. and Ahmed, H., Fraud Detection and Self Embedding, ACM Press New York, NY, USA, pp. 33 - 36, Series-Proceeding-Article Year of Publication, 1999
DOI
|
7 |
Rosset, S. Murad, U. Neumann, E. Idan, Y. and Pinkas, G., Discovery of Fraud Rules for Telecommunications-Challenges and Solutions, ACM Press New York, USA, pp 409 - 413, Series - Proceeding-Article Year of Publication, 1999
DOI
|
8 |
Soheila, E., The Enhancement of Credit Card Fraud Detection Systems Using Machine Learning Methodology, University Of Toronto (Canada), Mai, 38/06, p. 1640, Dec 2000
|
9 |
Agrawal, R. Mannila, H. Srikant, R. Toivonen, H. and A.I. Verkamo, Fast Discovery of Association Rules, In Advances in Knowledge Discovery and Data Mining, U.M. Fayyad, Piatetsky-Shapiro, G. Smith, P. and Uthurusamy, R. ed., AAAI Press/The MIT Press, pp. 307-328, 1996
|
10 |
J. Han, and Kamber, M., Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 2000
|
11 |
Master Card International s., The Developments of the SET Protocol, Internet URL < http://www.mastercard.com/set/>
|
12 |
Provost, F. and Fawcett, T., Robust Classification for Imprecise Environments. In: Machine Learning, Vol. 42, No. 3, pp. 203-231, 2001
DOI
|
13 |
Stolfo, S. Fan, W. Lee, W. Prodromidis, A. and Chan, P., Cost-Based Modeling for Fraud and Instruction Detection: Results from the JAM Project, Proc. DARPA Information Survivability Conference and Exposition, IEEE Computer Press, pp.l30-144, 2000
|
14 |
Glasheen, C. and Dowling, S., Increasing Internet Sales, Comm. IDC, Bulletin #W25213 - July 2001, Internet URL
|
15 |
Merchant Works., E-commerce Glossary, Internet URL
|
16 |
Verisign White Paper., Alternative Approaches to Managing Fraud, Internet URL
|
17 |
송용욱, 성기윤, 인터넷상의 전자 지불 시스템, Biz-on-Net, pp. 298-299, Internet URL
|
18 |
Information Technology OSI Systems Management., Objects and Attributes for Access Control, ISO/IEC 10164-9, JTC1, 1995
|
19 |
P.K. Chan, and Fan, W., Distributed Data Mining in Credit Card Fraud Detection, IEEE Intelligent Systems, November/December 1999, pp. 67-74
DOI
ScienceOn
|
20 |
SAS Institute Inc., Using Data Mining Techniques for Fraud Detection: A Best Practices Approach to Government Technology Solutions, Internet URL
|