• Title/Summary/Keyword: Rubber insulation

Search Result 108, Processing Time 0.023 seconds

Study on the AC Interfacial Breakdown Prosperities in the Interface between Toughened Epoxy and Rubber (Toughened Epoxy/Rubber계면의 교류 절연파괴 현상에 관한 연구)

  • 김태형;배덕권;이동규;정일형;김충혁;이홍표;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.771-774
    • /
    • 2000
  • Recently, complex insulation method is used in insulation system for underground power delivery devices. Considering the interfaces which affect stability of insulation system, By modeling interface between Epoxy and Rubber, AC interfacial breakdown properties with variation of many conditions to influence on electrical properties were investigated. In this paper, toughened Epoxy and Silicone rubber were used for materials to make interface .

  • PDF

Study on the Design of Butyl Rubber Compound and Noise Reduction System for Sound Insulation (소음 차단 성능 향상을 위한 부틸 탄성체 배합 및 진동제어 시스템 디자인 연구)

  • Kim, Won-Taek;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.95-102
    • /
    • 2014
  • The noise between floors of apartment has been hot issue nowadays. In order to improve the noise insulation performance, we proposed the antivibration rubber system which can be applied to the floor system for sound insulation. Among various types of elastomer, butyl rubber showed the good aging characteristic, low rebound resilience and high damping factor. Thus, the butyl rubber was selected as a basic rubber for antivibration rubber system. The effects of type and loading amounts of carbon black on antivibration properties of butyl rubber were studied. The increase of surface area and the content of carbon black resulted in high bound rubber fraction, high mechanical property, low rebound resilience, and high damping factor of butyl rubber. Based on the results of this study, the new antivibration rubber was prepared and applied to the floor system for sound insulation. The impact sounds of floor system proposed in this study were 40 dB and 43 dB in cases of light weight and heavy weight impact sound, respectively.

An Analysis of Influence Between the Power Feeding Line Insulation and Negative Rail Potential for the DC Ground Fault Protection in the Rubber Wheel System (고무차륜시스템에서의 지락보호를 위한 급전선로 절연과 부극전위와의 영향 분석)

  • Jung, Hosung;Shin, Seongkuen;Kim, Hyungchul;Park, Young;Cho, Sanghoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.577-583
    • /
    • 2013
  • We have analyzed influence of potential rise in negative bus, which caused by decrease of power feeding line insulation, upon protecting method of DC ground protection device which detecting potential rise between negative bus and ground in order to detect ground fault in the rubber wheel system. For this purpose, we proposed negative potential equation between negative bus and ground and calculated negative potential according to system condition changes by estimating power feeding line insulation changes in steel wheel system and rubber wheel system, and equalizing DC power feeding system when ground fault occurred. Also, in order to estimate negative potential of real system, we modeled the rubber wheel system, and simulated normal status, grounding fault occurrence and power feeding line insulation changes. In normal status, negative potential did not rise significantly regardless of vehicle operation. When ground fault occurred, negative potential rose up over 300V regardless of fault resistance. However, we also observed that negative potential rose when power feeding line insulation dropped down under $1M{\Omega}$. In conclusion, our result shows that in case of rubber wheel system unlike steel wheel system, relay will be prevented maloperation and insulation status observation can be ensured when ground over voltage relay will be set 200V ~ 300V.

Thermal Insulation Life Prediction of EPDM rubber Used for Electrical Insulation (고압절연용 EPDM rubber의 내열수명 예측)

  • Lee, Chul-Ho;Jeon, Young-Jun;Kim, Sang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1408-1410
    • /
    • 1997
  • Arrhenius plots are useful in predicting long-term use temperatures of organic materials and in choosing parameters for accelerated aging. The effects of antioxidant on the heat resistance and temperature index of EPDM rubber used for electrical insulation were investigated. The short-time points were obtained by 50% retention of elongation at break.

  • PDF

Improvement of Insulation Performance of Vehicle Rubber Hoses (자동차용 고무호스의 진동 절연성능 향상에 관한 연구)

  • Jung, Heon-Seob;Min, Byung-Kwon;Lee, Seong-Hoon;Woo, Hee-Soo;Park, Hyun-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.837-844
    • /
    • 2012
  • We considered an approach in terms of materials for improvement of insulation performance of vehicle rubber hoses. Ethylene propylene rubber(EPDM) for heater hoses in cooling system and acrylic rubber(AR) for intercooler hose in intake system were chosen for mixing for the vibration and noise performance. We modified EPDM and AR through changing compound of base polymer, reinforcement fillers and additives. Dynamic mechanical analysis(DMA) was used to measure viscoelastic properties such as shear modulus and loss factor($tan{\delta}$). Vehicle acceleration test was also conducted to observe indoor changes in insulation performance of hoses.

Insulation Method and Performance Evaluation for Fastening Unit of ALC Pannel-Curtain wall (ALC 패널 커튼월의 패스닝 유닛의 단열 방법과 성능 평가)

  • Kim, Bongl-Joo;Kim, Kyeong-A;Park, Je-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.107-110
    • /
    • 2011
  • In this study is to improve insulation performance that are the most weak insulation part of fastening unit of the curtain wall. It was produced that thought out to minimize mullion and connecting part, and evaluated performance that make a layer of insulation in the middle by using vibration-proof rubber or silicon. Vibration-proof rubber insulation is 2.6℃~4.0℃ higher and silicon insulation is 2.4℃ higher than non-insulation. Therefore the insulating layer of fastening unit is necessary.

  • PDF

A Study on Field Evaluation and Sound Insulation Improvement of Door (도어 차음성능 현장 평가 및 개선방안에 관한 연구)

  • Oh, Jin Kyun;Lee, Won Yeul;Yum, Sung Gon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.1012-1019
    • /
    • 2013
  • Recently, awareness of noise is increased and high performance sound insulation performance wall is designed. But in spite of installing high performance sound insulation performance wall, sound insulation performance in space is reduced by door. In this study, Sound insulation performance of doors which commonly used in buildings was measured to analyze current situation in the field and effect of method which increase sound insulation performance is analyzed quantitatively. As a result, sound insulation performance of doors which commonly used in buildings is FSTC 17~29 and can be increased about 2~3 dB by install rubber seal or mohair.

A Study on the Optimization of Interfacial Pressure for the Stress Relief Cone in the Ultra-High Voltage Level Prefabricated Type Joint Box (초초고압 CV Cable용(用) 조립형 직선 접속함에서의 Stress Relief Cone 계면압력 최적화에 관한 연구)

  • Baek, J.H.;Baek, S.Y.;Lee, S.K.;Huh, G.D.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1614-1616
    • /
    • 1998
  • Insulation performance of major components of prefabricated joint such as epoxy insulation unit and premolded rubber cone are guaranteed by material selection design and proper manufacturing. On the other hand insulation performance of the interfaces between the premolded rubber cone and the epoxy insulation unit and the cable insulation is maintained by keeping the premolded rubber cone to close contact with such insulation by spring. Electric characteristics of a interface depend on the contact pressure, but the required characteristics are assured so far as a proper contact pressure is maintained. In this report, the interfacial pressure by pressure sensors both in the early stage and after heating cycle were measured and the simulation by FEM program were presented. The comparison of these two results show that interfacial pressure could be controlled optimally by changing the spring length and lubricant state of the interface.

  • PDF

An Experimental Study on the Evaluation of Fastening Unit Insulation Developed for the Insulation of Curtain Wall

  • Kim, Bong-Joo;Kim, Kyeong-A
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.243-256
    • /
    • 2012
  • This study is the experimental study to improve the insulation of the fastening unit system, which has the most vulnerable insulation in the curtain walls. The Fastening Units were designed and fabricated to minimize the connection part of mullions. In addition, slight movements were taken into account and the performance of the middle layer was evaluated by forming an insulation layer with the vibration-proof rubber and the silicon to satisfy the mechanical and thermal performance criteria. A total of 10 experiments were performed under various conditions, such as indoor-outdoor temperature difference, type of insulation material, thickness of insulation material, and others. using the fabricated Fastening Units. As a result, the vibration-proof rubber insulation showed the temperature difference of $2.2^{\circ}C-5.0^{\circ}C$, and the silicon insulation showed the temperature difference of $2.8^{\circ}C-4.5^{\circ}C$, compared to the non-insulated Fasteniirature difference, typesng Units. When these results were compared with the psychometric chart graph, the insulated Fastening Unit designed in this study can be considered to prevent the dew condensation.