• 제목/요약/키워드: Rough Sets

검색결과 96건 처리시간 0.024초

Intuitionistic Fuzzy Rough Approximation Operators

  • Yun, Sang Min;Lee, Seok Jong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권3호
    • /
    • pp.208-215
    • /
    • 2015
  • Since upper and lower approximations could be induced from the rough set structures, rough sets are considered as approximations. The concept of fuzzy rough sets was proposed by replacing crisp binary relations with fuzzy relations by Dubois and Prade. In this paper, we introduce and investigate some properties of intuitionistic fuzzy rough approximation operators and intuitionistic fuzzy relations by means of topology.

러프 집합에서의 식별 불능 관계를 이용한 다중 분광 이미지 데이터의 밴드 분류 (Bands Classification of Multispectral Image Data using Indiscernibility Relations in Rough Sets)

  • 원성현
    • 경영과정보연구
    • /
    • 제1권
    • /
    • pp.401-412
    • /
    • 1997
  • Traditionally, classification of remote sensed image data is one of the important works for image data analysis procedure. So, many researchers have been devoted their endeavor to increasing accuracy of analysis, also, many classification algorithms have been proposed. In this paper, we propose new bands selection method for multispectral bands of remote sensed image data that use rough set theory. Using indiscernibility relations in rough sets, we show that can select the efficient bands of multispectral image data, automatically.

  • PDF

러프 집합을 이용한 다중 분광 이미지 데이터의 분류 (Classification of Multi Spectral Image Data using Rough Sets)

  • 원성현;이병성;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.205-208
    • /
    • 1997
  • Traditionally, classification of remote sensed image data is one of the important works for image data analysis procedure. So, many researchers devote their endeavor to increasing accuracy of analysis, also, many classification algorithms have been proposed. In this paper, we propose new classification method for remote sensed image data that use rough set theory. Using indiscernibility relation of rough sets, we show that can classify image data very easily.

  • PDF

퍼지집합과 러프집합을 이용한 계층 구조 가스 식별 시스템의 설계 (Design of a Hierarchically Structured Gas Identification System Using Fuzzy Sets and Rough Sets)

  • 방영근;이철희
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.419-426
    • /
    • 2018
  • An useful and effective design method for the gas identification system is presented in this paper. The proposed gas identification system adopts hierarchical structure with two level rule base combining fuzzy sets with rough sets. At first, a hybrid genetic algorithm is used in grouping the array sensors of which the measured patterns are similar in order to reduce the dimensionality of patterns to be analyzed and to make rule construction easy and simple. Next, for low level identification, fuzzy inference systems for each divided group are designed by using TSK fuzzy rule, which allow handling the drift and the uncertainty of sensor data effectively. Finally, rough set theory is applied to derive the identification rules at high level which reflect the identification characteristics of each divided group. Thus, the proposed method is able to accomplish effectively dimensionality reduction as well as accurate gas identification. In simulation, we demonstrated the effectiveness of the proposed methods by identifying five types of gases.

러프집합을 이용한 규칙기반 신체활동상태 결정방법 (Decision method for rule-based physical activity status using rough sets)

  • 이영동;손창식;정완영;박희준;김윤년
    • 센서학회지
    • /
    • 제18권6호
    • /
    • pp.432-440
    • /
    • 2009
  • This paper presents an accelerometer based system for physical activity decision that are capable of recognizing three different types of physical activities, i.e., standing, walking and running, using by rough sets. To collect physical acceleration data, we developed the body sensor node which consists of two custom boards for physical activity monitoring applications, a wireless sensor node and an accelerometer sensor module. The physical activity decision is based on the acceleration data collected from body sensor node attached on the user's chest. We proposed a method to classify physical activities using rough sets which can be generated rules as attributes of the preprocessed data and by constructing a new decision table, rules reduction. Our experimental results have successfully validated that performance of the rule patterns after removing the redundant attribute values are better and exactly same compare with before.

New Cellular Neural Networks Template for Image Halftoning based on Bayesian Rough Sets

  • Elsayed Radwan;Basem Y. Alkazemi;Ahmed I. Sharaf
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.85-94
    • /
    • 2023
  • Image halftoning is a technique for varying grayscale images into two-tone binary images. Unfortunately, the static representation of an image-half toning, wherever each pixel intensity is combined by its local neighbors only, causes missing subjective problem. Also, the existing noise causes an instability criterion. In this paper an image half-toning is represented as a dynamical system for recognizing the global representation. Also, noise is reduced based on a probabilistic model. Since image half-toning is considered as 2-D matrix with a full connected pass, this structure is recognized by the dynamical system of Cellular Neural Networks (CNNs) which is defined by its template. Bayesian Rough Sets is used in exploiting the ideal CNNs construction that synthesis its dynamic. Also, Bayesian rough sets contribute to enhance the quality of the halftone image by removing noise and discovering the effective parameters in the CNNs template. The novelty of this method lies in finding a probabilistic based technique to discover the term of CNNs template and define new learning rules for CNNs internal work. A numerical experiment is conducted on image half-toning corrupted by Gaussian noise.

Design of the Integrated Incomplete Information Processing System based on Rough Set

  • Jeong, Gu-Beom;Chung, Hwan-Mook;Kim, Guk-Boh;Park, Kyung-Ok
    • 한국지능시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.441-447
    • /
    • 2001
  • In general, Rough Set theory is used for classification, inference, and decision analysis of incomplete data by using approximation space concepts in information system. Information system can include quantitative attribute values which have interval characteristics, or incomplete data such as multiple or unknown(missing) data. These incomplete data cause tole inconsistency in information system and decrease the classification ability in system using Rough Sets. In this paper, we present various types of incomplete data which may occur in information system and propose INcomplete information Processing System(INiPS) which converts incomplete information system into complete information system in using Rough Sets.

  • PDF

ROUGH PRIME IDEALS AND ROUGH FUZZY PRIME IDEALS IN GAMMA-SEMIGROUPS

  • Chinram, Ronnason
    • 대한수학회논문집
    • /
    • 제24권3호
    • /
    • pp.341-351
    • /
    • 2009
  • The notion of rough sets was introduced by Z. Pawlak in the year 1982. The notion of a $\Gamma$-semigroup was introduced by M. K. Sen in the year 1981. In 2003, Y. B. Jun studied the roughness of sub$\Gamma$-semigroups, ideals and bi-ideals in i-semigroups. In this paper, we study rough prime ideals and rough fuzzy prime ideals in $\Gamma$-semigroups.