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ROUGH PRIME IDEALS AND ROUGH FUZZY PRIME
IDEALS IN GAMMA-SEMIGROUPS

Ronnason Chinram

Abstract. The notion of rough sets was introduced by Z. Pawlak in the
year 1982. The notion of a Γ-semigroup was introduced by M. K. Sen
in the year 1981. In 2003, Y. B. Jun studied the roughness of subΓ-
semigroups, ideals and bi-ideals in Γ-semigroups. In this paper, we study
rough prime ideals and rough fuzzy prime ideals in Γ-semigroups.

1. Introduction

The notion of rough sets was introduced by Z. Pawlak in the year 1982
([14]). The theory of rough sets has emerged as another major mathematical
approach for managing uncertainty that arises from inexact, noisy or incom-
plete information. The algebraic approach of rough sets was studied by some
authors, for example, J. Iwinski ([7]) and N. Kuroki ([10], [11], and [12]) studied
algebraic properties of rough sets; R. Biswas and S. Nanda ([2]) introduced the
notion of rough subgroups; B. Davvaz ([6]) studied rough subpolygroups in a
factor polygroup; and Q. M. Xiao and Z. L. Zhang ([20]) studied rough prime
ideals and rough fuzzy prime ideals in semigroups. The notion of a Γ-semigroup
was introduced by M. K. Sen in the year 1981 ([17]). Γ-semigroups general-
ize semigroups. Many classical notions of semigroups have been extended to
Γ-semigroups (see [3], [4], [5], [15], [16], [17], and [18]). Some properties of
Γ-semigroups were studied by some authors, for example, the author ([3] and
[4]) studied quasi-ideals and bi-ideals in Γ-semigroups; Y. I. Kwon and S. K.
Lee ([13]) studied weakly prime ideals of ordered Γ-semigroups; Y. B. Jun ([9])
studied closure Γ-semigroups and M. Siripitukdet and A. Iampan ([19]) studied
the ordered n-prime ideals in ordered Γ-semigroups. In 2003, Y. B. Jun ([8])
studied the roughness of subΓ-semigroups, ideals and bi-ideals in Γ-semigroups.
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In this paper, we study Θ-lower and Θ-upper rough prime ideals and Θ-lower
and Θ-upper rough fuzzy prime ideals in Γ-semigroups.

2. Preliminaries

Let S = {x, y, z, . . .} and Γ = {α, β, γ, . . .} be two nonempty sets. S is called
a Γ-semigroup if S satisfies the identities xγy ∈ S and (xγy)µz = xγ(yµz) for
all x, y, z ∈ S and γ, µ ∈ Γ.

Let S be an arbitrary semigroup and Γ any nonempty set. Let aγb = ab
for all a, b ∈ S and γ ∈ Γ. It is easy to see that S is a Γ-semigroup. Thus a
semigroup can be considered to be a Γ-semigroup.

Let S be a Γ-semigroup and α a fixed element in Γ. We define a · b = aαb
for all a, b ∈ S. We can show that (S, ·) is a semigroup.

Let S be a Γ-semigroup. A nonempty subset T of S is called a subΓ-
semigroup of S if aγb ∈ T for all a, b ∈ T and γ ∈ Γ. A nonempty subset
L of S is called a left ideal of S if SΓL ⊆ L and a nonempty subset R of S is
called a right ideal of S if RΓS ⊆ R. A nonempty subset I of S is called an
ideal of S if I is both a left and a right ideal of S.

Let S be a Γ-semigroup. An equivalence relation Θ is called a congruence
on S if for all a, b, x ∈ S and γ ∈ Γ, if (a, b) ∈ Θ, then (aγx, bγx) ∈ Θ and
(xγa, xγb) ∈ Θ. Let [a]Θ denote the congruence class containing the element
a ∈ S. A congruence Θ on S is said to be complete if [a]Θγ[b]Θ = [aγb]Θ for all
a, b ∈ S and γ ∈ Γ. Let A be a nonempty subset of S and Θ a congruence on
S. The Θ-lower approximation and Θ-upper approximation of A are defined to
be the sets

Θ(A) = {x ∈ S | [x]Θ ⊆ A}
and

Θ(A) = {x ∈ S | [x]Θ ∩A 6= ∅},
respectively. Let Θ be a congruence on a Γ-semigroup S. A nonempty subset
A of S is called a Θ-lower (Θ-upper, respectively) rough subΓ-semigroup of S
if the Θ-lower (Θ-upper, respectively) approximation of A is a subΓ-semigroup
of S. The Θ-lower and Θ-upper rough right ideal (left ideal, ideal) of S are
defined analogously. The following theorem is well-known ([8]).

Theorem 2.1. Let Θ be a complete congruence on a Γ-semigroup S and I an
ideal of S. Then the following statements hold.

(i) If Θ(I) 6= ∅, then I is a Θ-lower rough ideal of S.
(ii) I is a Θ-upper rough ideal of S.

3. Rough prime ideals

An ideal I of a Γ-semigroup S is a prime ideal of S if for x, y ∈ S and γ ∈ Γ
if xγy ∈ I implies x ∈ I or y ∈ I. Let Θ be a congruence on a Γ-semigroup S.
Then a subset A of S is called a Θ-lower rough prime ideal of S if Θ(A) is a
prime ideal of S. A Θ-upper rough prime ideal of S is defined analogously. A
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is called a rough prime ideal of R if A is a Θ-lower and Θ-upper rough prime
ideal of S.

Example 3.1. Let Γ = {5, 7}. For x, y ∈ N and γ ∈ Γ, define xγy = x · γ · y
where · is the usual multiplication on N. Then N is a Γ-semigroup.

Define a relation Θ on N by

xΘy ⇔ 3 | x− y for all x, y ∈ N.

Then Θ is a congruence on N such that Θ-congruence classes are the subset
{1, 4, 7, 10, . . .} = {3n − 2 | n ∈ N}, {2, 5, 8, 11, . . .} = {3n − 1 | n ∈ N} and
{3, 6, 9, 12, . . .} = {3n | n ∈ N}.

Let A1 = {3, 12}. We have Θ(A1) = ∅ and Θ(A1) = {3n | n ∈ N}. So Θ(A1)
is not a prime ideal of N. Next, we claim that Θ(A1) is a prime ideal of N. It
is easy to see that Θ(A1) = {3n | n ∈ N} is an ideal of a Γ-semigroup N. Let
x, y ∈ N such that xγy ∈ Θ(A1). Then 3 | xγy. Since 3 - γ, we have 3 | x or
3 | y. Thus x ∈ Θ(A1) or y ∈ Θ(A1). So A1 is a Θ-upper rough prime ideal of
N but not a Θ-lower rough prime ideal of N.

Let A2 = {3n | n ∈ N} ∪ {1}. We have Θ(A2) = {3n | n ∈ N} and
Θ(A2) = {3n | n ∈ N} ∪ {3n − 2 | n ∈ N}. Then Θ(A2) is a prime ideal of N.
But Θ(A2) is not a ideal of N because 10 = 2 ·5 ·1 ∈ NΓΘ(A2) but 10 6∈ Θ(A2).
So A2 is a Θ-lower rough prime ideal of N but not a Θ-upper rough prime ideal
of N.

Let A3 = {3n | n ∈ N} ∪ {1, 2}. We have Θ(A3) = {3n | n ∈ N} and
Θ(A3) = N. Then Θ(A3) and Θ(A3) = N are prime ideals of N. Therefore
A3 is a Θ-lower rough prime ideal of N and a Θ-upper rough prime ideal of N.
Then A3 is a rough prime ideal of N.

If A4 = {2n | n ∈ N}, then A4 is a prime ideal of N but Θ(A4) = ∅.
Therefore if I is a prime ideal, then Θ(I) need not be a prime ideal.

The following theorem is true.

Theorem 3.1. Let Θ be a complete congruence on a Γ-semigroup S and I a
prime ideal of S. The following statements are true.

(i) If Θ(I) 6= ∅, then I is a Θ-lower rough prime ideal of S.
(ii) I is a Θ-upper rough prime ideal of S.
(iii) If Θ(I) 6= ∅, then I is a rough prime ideal of S.

Proof. (i) By Theorem 2.1(i), we know that Θ(I) is an ideal of S. We suppose
that Θ(I) is not prime. Then there exist x, y ∈ S and γ ∈ Γ such that xγy ∈
Θ(I) but x /∈ Θ(I) and y /∈ Θ(I). Thus [x]Θ 6⊆ I and [y]Θ 6⊆ I. Then there
exists a ∈ [x]Θ but a /∈ I and there exists b ∈ [y]Θ but b /∈ I. We have
aγb ∈ [x]Θγ[y]Θ ⊆ [xγy]Θ. Since xγy ∈ Θ(I), [xγy]Θ ⊆ I. This implies
aγb ∈ I. Since I is a prime ideal of S, a ∈ I or b ∈ I. It contradicts the
supposition. Therefore Θ(I) is a prime ideal of S. Hence I is a Θ-lower rough
prime ideal of S.
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(ii) By Theorem 2.1(ii), we know that Θ(I) is an ideal of S. Let x, y ∈ S
and γ ∈ Γ such that xγy ∈ Θ(I). Then ([x]Θγ[y]Θ)∩ I = [xγy]Θ ∩ I 6= ∅. Thus
there exist a ∈ [x]Θ and b ∈ [y]Θ such that aγb ∈ I. Since I is prime, a ∈ I or
b ∈ I. Thus [x]Θ ∩ I 6= ∅ or [y]Θ ∩ I 6= ∅. So x ∈ Θ(I) or y ∈ Θ(I). Therefore
Θ(I) is a prime ideal of S. Hence I is a Θ-upper rough prime ideal of S.

(iii) It follows from (i) and (ii). ¤

However, the converse of Theorem 3.1 is not true in general. From Exam-
ple 3.1, we can see that A3 is not a prime ideal of N but A3 is a Θ-lower rough
prime ideal of N and a Θ-upper rough prime ideal of N.

Let S be a Γ-semigroup and Θ a congruence on S. Let

S/Θ = {[x]Θ | x ∈ S}.
For [a]Θ, [b]Θ ∈ S/Θ and γ ∈ Γ, let [a]Θγ[b]Θ = [aγb]Θ. This is well-defined,
since for all a, a′, b, b′ ∈ S and γ ∈ Γ,

[a]Θ = [a′]Θ and [b]Θ = [b′]Θ ⇒ (a, a′), (b, b′) ∈ Θ

⇒ (aγb, a′γb), (a′γb, a′γb′) ∈ Θ

⇒ (aγb, a′γb′) ∈ Θ

⇒ [aγb]Θ = [a′γb′]Θ.

Let a, b, c ∈ S and γ, µ ∈ Γ. We have

([a]Θγ[b]Θ)µ[c]Θ = [((aγb)µc)]Θ = [(aγ(bµc))]Θ = [a]Θγ([b]Θµ[c]Θ).

Then the quotient set S/Θ is a Γ-semigroup. It is called a quotient Γ-semigroup
of S by Θ. We can see some properties of quotient Γ-semigroups in [5].

Let Θ be a congruence on a Γ-semigroup S. The Θ-lower approximation
and Θ-upper approximation can be presented in an equivalent form as shown
below:

Θ(A)/Θ = {[x]Θ ∈ S/Θ | [x]Θ ⊆ A}
and

Θ(A)/Θ = {[x]Θ ∈ S/Θ | [x]Θ ∩A 6= ∅},
respectively.

Lemma 3.2. Let Θ be a complete congruence on a Γ-semigroup S. The fol-
lowing statements are true.

(i) If I is a Θ-lower rough ideal of S, then Θ(I)/Θ is an ideal of S/Θ.
(ii) If I is a Θ-upper rough ideal of S, then Θ(I)/Θ is an ideal of S/Θ.

Proof. (i) Let [x]Θ ∈ Θ(I)/Θ, [y]Θ ∈ S/Θ and γ ∈ Γ. Then [x]Θ ⊆ I. This
implies x ∈ Θ(I). Since Θ(I) is an ideal of S, xγy ∈ Θ(I). Then [xγy]Θ ⊆ I.
We have

[x]Θγ[y]Θ = [xγy]Θ ⊆ I.

Then [x]Θγ[y]Θ ∈ Θ(I)/Θ. Similarly, [y]Θγ[x]Θ ∈ Θ(I)/Θ. Therefore Θ(I)/Θ
is an ideal of S/Θ.
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(ii) Let [x]Θ ∈ Θ(I)/Θ, [y]Θ ∈ S/Θ and γ ∈ Γ. Then [x]Θ ∩ I 6= ∅. This
implies x ∈ Θ(I). Since Θ(I) is an ideal of S, xγy ∈ Θ(I). Then [xγy]Θ∩I 6= ∅.
We have

([x]Θγ[y]Θ) ∩ I = [xγy]Θ ∩ I 6= ∅.
Then [x]Θγ[y]Θ ∈ Θ(I)/Θ. Similarly, [y]Θγ[x]Θ ∈ Θ(I)/Θ. Therefore Θ(I)/Θ
is an ideal of S/Θ. ¤

Theorem 3.3. Let Θ be a complete congruence on a Γ-semigroup S. The
following statements are true.

(i) If I is a Θ-lower rough prime ideal of S, then Θ(I)/Θ is a prime ideal
of S/Θ.

(ii) If I is a Θ-upper rough prime ideal of S, then Θ(I)/Θ is a prime ideal
of S/Θ.

Proof. (i) By Lemma 3.2(i), we know that Θ(I)/Θ is an ideal of S. Let
[x]Θ, [y]Θ ∈ S/Θ and γ ∈ Γ such that [x]Θγ[y]Θ ∈ Θ(I)/Θ. Then [xγy]Θ ∈
Θ(I)/Θ. This implies [xγy]Θ ⊆ I. Then xγy ∈ Θ(I). Since I is a Θ-lower
rough prime ideal of S, x ∈ Θ(I) or y ∈ Θ(I). So [x]Θ ⊆ I or [y]Θ ⊆ I. Thus
[x]Θ ∈ Θ(I)/Θ or [y]Θ ∈ Θ(I)/Θ. Therefore Θ(I)/Θ is a prime ideal of S/Θ.

(ii) By Lemma 3.2(ii), we know that Θ(I)/Θ is an ideal of S. Let [x]Θ, [y]Θ ∈
S/Θ and γ ∈ Γ such that [x]Θγ[y]Θ ∈ Θ(I)/Θ. Then [xγy]Θ ∈ Θ(I)/Θ. Thus
[xγy]Θ ∩ I 6= ∅. Then xγy ∈ Θ(I). Since I is a Θ-upper rough prime ideal of
S, x ∈ Θ(I) or y ∈ Θ(I). So [x]Θ ∩ I 6= ∅ or [y]Θ ∩ I 6= ∅. Then [x]Θ ∈ Θ(I)/Θ
or [y]Θ ∈ Θ(I)/Θ. Hence Θ(I)/Θ is a prime ideal of S/Θ. ¤

4. Rough fuzzy prime ideals

A function f from S to the unit interval [0, 1] is called a fuzzy subset of S.
The Γ-semigroup S itself is a fuzzy subset of S such that S(x) = 1 for all x ∈ S,
denoted also by S. A fuzzy subset f of a Γ-semigroup S is called a fuzzy ideal
of S if f(xγy) ≥ f(x) ∨ f(y) for any x, y ∈ S and γ ∈ Γ.

Let f be a fuzzy subset of S and λ ∈ [0, 1]. The set

fλ = {x ∈ S | f(x) ≥ λ}
is called the λ-level set of a fuzzy set f .

Theorem 4.1. Let f be a fuzzy subset of a Γ-semigroup S. Then f is a fuzzy
ideal of S if and only if for all λ ∈ [0, 1], if fλ 6= ∅, then fλ is an ideal of S.

Proof. Assume f is a fuzzy ideal of S. Then f(xγy) ≥ f(x) ∨ f(y) for any
x, y ∈ S and γ ∈ Γ. Assume fλ 6= ∅. Let x ∈ fλ, y ∈ S and γ ∈ Γ. Thus
f(x) ≥ λ. Since f is a fuzzy ideal of S, f(xγy) ≥ f(x) ∨ f(y) ≥ f(x) ≥ λ.
Therefore xγy ∈ fλ. Similarly, yγx ∈ fλ. Hence fλ is an ideal of S.

Conversely, assume for all λ ∈ [0, 1], if fλ 6= ∅, then fλ is an ideal of S. Let
x, y ∈ S and γ ∈ Γ.
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Case 1 : f(x) ≥ f(y). Let λ = f(x). Then x ∈ fλ. By assumption, we have
fλ is an ideal of S. So xγy ∈ fλ. Then f(xγy) ≥ λ = f(x) = f(x) ∨ f(y).

Case 2 : f(x) < f(y). Let λ = f(y). Then y ∈ fλ. By assumption, we have
fλ is an ideal of S. So xγy ∈ fλ. Then f(xγy) ≥ λ = f(y) = f(x) ∨ f(y).

Therefore f is a fuzzy ideal of S. ¤

Let f be a fuzzy subset of S and λ ∈ [0, 1]. The set

fS
λ = {x ∈ S | f(x) > λ}

is called the λ-strong level set of a fuzzy set f .

Theorem 4.2. Let f be a fuzzy subset of a Γ-semigroup S. Then f is a fuzzy
ideal of S if and only if for all λ ∈ [0, 1], if fS

λ 6= ∅, then fS
λ is an ideal of S.

Proof. Assume f is a fuzzy ideal of S. Then f(xγy) ≥ f(x) ∨ f(y) for any
x, y ∈ S and γ ∈ Γ. Assume fS

λ 6= ∅. Let x ∈ fS
λ , y ∈ S and γ ∈ Γ. Thus

f(x) > λ. Since f is a fuzzy ideal of S, f(xγy) ≥ f(x) ∨ f(y) ≥ f(x) > λ.
Therefore xγy ∈ fS

λ . Similarly, yγx ∈ fS
λ . Hence fS

λ is an ideal of S.
Conversely, assume for all λ ∈ [0, 1], if fS

λ 6= ∅, then fS
λ is an ideal of S. Let

x, y ∈ S and γ ∈ Γ.
Case 1 : f(x) ≥ f(y). Thus x ∈ fS

λ for all λ < f(x). By assumption, we
have fS

λ is an ideal of S for all λ < f(x). So xγy ∈ fS
λ for all λ < f(x). Then

f(xγy) > λ for all λ < f(x). Then f(xγy) ≥ f(x) = f(x) ∨ f(y).
Case 2 : f(x) < f(y). Then y ∈ fS

λ for all λ < f(y). By assumption, we
have fS

λ is an ideal of S for all λ < f(y). So xγy ∈ fS
λ for all λ < f(y). Then

f(xγy) > λ for all λ < f(y). Then f(xγy) ≥ f(y) = f(x) ∨ f(y).
Therefore f is a fuzzy ideal of S. ¤

Let f be a fuzzy subset of S. Let Θ(f) and Θ(f) be fuzzy subsets of S
defined by

Θ(f)(x) =
∧

a∈[x]Θ

f(a) and Θ(f)(x) =
∨

a∈[x]Θ

f(a).

The fuzzy subsets Θ(f) and Θ(f) of S are called, respectively, the Θ-lower
approximation and Θ-upper approximation of a fuzzy set f .

Example 4.1. Let N be a Γ-semigroup by Γ = {5, 7} and xγy = x ·γ ·y where
· is the usual multiplication on N. Define a congruence Θ on N by

xΘy ⇔ 3 | x− y for all x, y ∈ N.

Let f1 : N→ [0, 1] by

f1(n) =
1
n

for all n ∈ N.
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We have that Θ(f1)(n) = 0 for all n ∈ N. Then Θ(f1) is a fuzzy ideal of N. We
have that

Θ(f1)(n) =





1 if n ≡ 1(mod 3),
1
2 if n ≡ 2(mod 3),
1
3 if n ≡ 0(mod 3).

It is easy to see that f1 and Θ(f1) are not fuzzy ideals of N.
Let f2 : N→ [0, 1] by

f2(n) = 1− 1
n

for all n ∈ N.

It is easy to see that f2 is a fuzzy ideal of N. We have that Θ(f2)(n) = 1 for
all n ∈ N. Then Θ(f2) is a fuzzy ideal of N. We have that

Θ(f2)(n) =





0 if n ≡ 1(mod 3),
1
2 if n ≡ 2(mod 3),
2
3 if n ≡ 0(mod 3).

It is easy to see that Θ(f2) is not a fuzzy ideal of N.

Let Θ be a complete congruence on a Γ-semigroup S and A a nonempty
subset of S. The characteristic mapping of A, denoted by χA, is the mapping
of S into [0, 1] defined by

χA(x) =

{
1 if x ∈ A,

0 if x /∈ A.

Theorem 4.3. Let Θ be a complete congruence on a Γ-semigroup S and A a
nonempty subset of S. The following statements are true.

(i) A is a Θ-lower rough ideal of S if and only if Θ(χA) 6= 0 and Θ(χA)
is a fuzzy ideal of S.

(ii) A is a Θ-upper rough ideal of S if and only if Θ(χA) is a fuzzy ideal of
S.

Proof. (i) Assume A is a Θ-lower rough ideal of S. So Θ(A) is an ideal of
S. Then there exists a ∈ S such that [a]Θ ⊆ A. This implies Θ(χA) 6= 0.
Let x, y ∈ S and γ ∈ Γ. We claim that

∧
c∈[x]Θ
d∈[y]Θ

χA(cγd) ≥
(∧

c∈[x]Θ
χA(c)

)
∨

(∧
d∈[y]Θ

χA(d)
)

.

Case 1: [x]Θ ⊆ A or [y]Θ ⊆ A. Then c ∈ Θ(A) for all c ∈ [x]Θ or d ∈ Θ(A)
for all d ∈ [y]Θ. Since Θ(A) is an ideal of S, cγd ∈ Θ(A) for all c ∈ [x]Θ
and d ∈ [y]Θ. Then

∧
c∈[x]Θ
d∈[y]Θ

χA(cγd) = 1. This implies
∧

c∈[x]Θ
d∈[y]Θ

χA(cγd) ≥
(∧

c∈[x]Θ
χA(c)

)
∨

(∧
d∈[y]Θ

χA(d)
)

.
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Case 2: [x]Θ 6⊆ A and [y]Θ 6⊆ A. Then
∧

c∈[x]Θ
χA(c) =

∧
d∈[y]Θ

χA(d) = 0.

Hence
∧

c∈[x]Θ
d∈[y]Θ

χA(cγd) ≥
(∧

c∈[x]Θ
χA(c)

)
∨

(∧
d∈[y]Θ

χA(d)
)
.

We have

Θ(χA)(xγy) =
∧

a∈[xγy]Θ

χA(a)

=
∧

a∈[x]Θγ[y]Θ

χA(a)

=
∧

c∈[x]Θ
d∈[y]Θ

χA(cγd)

≥

 ∧

c∈[x]Θ

χA(c)


 ∨


 ∧

d∈[y]Θ

χA(d)




= Θ(χA)(x) ∨Θ(χA)(y).

Therefore Θ(χA) is a fuzzy ideal of S.
Conversely, assume Θ(χA) 6= 0 and Θ(χA) is a fuzzy ideal of S. Then there

exists a ∈ S such that [a]Θ ⊆ A. This implies Θ(A) 6= ∅. Let x ∈ Θ(A) and
y ∈ S. Then [x]Θ ⊆ A. So Θ(χA)(x) =

∧
c∈[x]Θ

χA(c) = 1. Since Θ(χA) is a
fuzzy ideal of S, we have Θ(χA)(xγy) ≥ Θ(χA)(x) = 1. So [xγy]Θ ⊆ A. Hence
xγy ∈ Θ(A).

(ii) The proof of (ii) is similar to (i). ¤

Theorem 4.4. Let Θ be a complete congruence on a Γ-semigroup S and f a
fuzzy ideal of S. Then Θ(f) is a fuzzy ideal of S.

Proof. Assume f is a fuzzy ideal of S. Let x, y ∈ S and γ ∈ Γ. Then f(xγy) ≥
f(x) ∨ f(y). We have

Θ(f)(xγy) =
∨

a∈[xγy]Θ

f(a) =
∨

a∈[x]Θγ[y]Θ

f(a)

=
∨

c∈[x]Θ
d∈[y]Θ

f(cγd) ≥

 ∨

c∈[x]Θ

f(c)


 ∨


 ∨

d∈[y]Θ

f(d)




= Θ(f)(x) ∨Θ(f)(y).

Then Θ(f)(xγy) ≥ Θ(f)(x)∨Θ(f)(y). Therefore Θ(f) is a fuzzy ideal of S. ¤

From Example 4.1, we can see that the converse of Theorem 4.4 is not true
in general.

A fuzzy ideal f of a Γ-semigroup S is called a fuzzy prime ideal of S if
f(xγy) = f(x) or f(xγy) = f(y) for all x, y ∈ S and γ ∈ Γ.
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Theorem 4.5. Let f be a fuzzy subset of a Γ-semigroup S. Then f is a fuzzy
prime ideal of S if and only if for all λ ∈ [0, 1], if fλ 6= ∅, then fλ is a prime
ideal of S.

Proof. Assume f is a fuzzy prime ideal of S. Then f is a fuzzy ideal of S.
Assume fλ 6= ∅. By Theorem 4.1, fλ is an ideal of S. Let x, y ∈ S and γ ∈ Γ
such that xγy ∈ fλ. Since f is a fuzzy prime ideal of S, f(xγy) = f(x) or
f(xγy) = f(y). This implies x ∈ fλ or y ∈ fλ. Therefore fλ is a prime ideal of
S.

Conversely, assume for all λ ∈ [0, 1], if fλ 6= ∅, then fλ is a prime ideal of S.
Let x, y ∈ S and γ ∈ Γ. By Theorem 4.1, f is a fuzzy ideal of S. This implies
f(xγy) ≥ f(x) and f(xγy) ≥ f(y). Let λ = f(xγy). Thus xγy ∈ fλ. Since fλ

is a prime ideal of S, x ∈ fλ or y ∈ fλ. This implies that f(x) ≥ λ = f(xγy)
or f(y) ≥ λ = f(xγy). Hence f(xγy) = f(x) or f(xγy) = f(y). Hence f is a
fuzzy prime ideal of S. ¤
Theorem 4.6. Let f be a fuzzy subset of a Γ-semigroup S. Then f is a fuzzy
prime ideal of S if and only if for all λ ∈ [0, 1], if fS

λ 6= ∅, then fS
λ is a prime

ideal of S.

Proof. Assume f is a fuzzy prime ideal of S. Then f is a fuzzy ideal of S.
Assume fS

λ 6= ∅. By Theorem 4.2, fS
λ is an ideal of S. Let x, y ∈ S and γ ∈ Γ

such that xγy ∈ fS
λ . Then f(xγy) > λ. Since f is a fuzzy prime ideal of S,

f(xγy) = f(x) or f(xγy) = f(y). This implies f(x) > λ or f(y) > λ. Hence
x ∈ fS

λ or y ∈ fS
λ . Therefore fS

λ is a prime ideal of S.
Conversely, assume for all λ ∈ [0, 1], if fS

λ 6= ∅, then fS
λ is a prime ideal of S.

Let x, y ∈ S and γ ∈ Γ. By Theorem 4.2, f is a fuzzy ideal of S. This implies
f(xγy) ≥ f(x) and f(xγy) ≥ f(y). We have xγy ∈ fS

λ for all λ < f(xγy).
Since fS

λ is a prime ideal of S for all λ < f(xγy), x ∈ fS
λ or y ∈ fS

λ for all
λ < f(xγy). This implies that f(x) > λ or f(y) > λ for all λ < f(xγy). Then
f(x) ≥ f(xγy) or f(y) ≥ f(xγy). Hence f(xγy) = f(x) or f(xγy) = f(y).
Hence f is a fuzzy prime ideal of S. ¤

Let Θ be a congruence on a Γ-semigroup S. A fuzzy subset f of S is called
a Θ-lower rough fuzzy prime ideal of S if Θ(f) is a fuzzy prime ideal of S. A
Θ-upper rough fuzzy prime ideal of S is defined analogously. We call f a rough
fuzzy prime ideal of S if it is both a Θ-lower and Θ-upper rough fuzzy prime
ideal of S.

Lemma 4.7. Let Θ be a congruence on a Γ-semigroup S. If f is a fuzzy subset
of S and λ ∈ [0, 1], then

(i) ] (Θ(f))λ = Θ(fλ) and
(ii) (Θ(f))S

λ = Θ(fS
λ ).

Proof. (i) Let x ∈ (Θ(f))λ. Then Θ(f)(x) ≥ λ. So
∧

a∈[x]Θ

f(a) ≥ λ. Therefore

f(a) ≥ λ for all a ∈ [x]Θ. This implies [x]Θ ⊆ fλ. Therefore x ∈ Θ(fλ).
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Conversely, assume x ∈ Θ(fλ). Thus [x]Θ ⊆ fλ. Then f(a) ≥ λ for all
a ∈ [x]Θ. This implies

∧

a∈[x]Θ

f(a) ≥ λ. Thus Θ(f)(x) ≥ λ. Hence x ∈ (Θ(f))λ.

(ii) Let x ∈ (Θ(f))S
λ . Then Θ(f)(x) > λ. So

∨

a∈[x]Θ

f(a) > λ. Therefore

f(a) > λ for some a ∈ [x]Θ. This implies [x]Θ ∩ fS
λ 6= ∅. Therefore x ∈ Θ(fS

λ ).
Conversely, assume x ∈ Θ(fS

λ ). Thus [x]Θ ∩ fS
λ 6= ∅. Then f(a) > λ for

some a ∈ [x]Θ. This implies
∨

a∈[x]Θ

f(a) > λ. Thus Θ(f)(x) > λ. Hence

x ∈ (Θ(f))S
λ . ¤

Theorem 4.8. Let f be a fuzzy prime ideal of a Γ-semigroup S and Θ be a
complete congruence on S. Then f is a rough fuzzy prime ideal of S.

Proof. Let f be a fuzzy prime ideal of a Γ-semigroup S and Θ a complete
congruence on S. By Theorem 4.5, for all λ ∈ [0, 1], if fλ 6= ∅, then fλ is
a prime ideal of S. By Theorem 3.1(i), for all λ ∈ [0, 1], if Θ(fλ) 6= ∅, then
Θ(fλ) is a prime ideal of S. From this and Lemma 4.7(i), for all λ ∈ [0, 1], if
(Θ(f))λ 6= ∅, (Θ(f))λ is a prime ideal of S. By Theorem 4.5, Θ(f) is a fuzzy
prime ideal of S. Hence f is a Θ-lower rough fuzzy prime ideal of S. Similarly,
f is a Θ-upper rough fuzzy prime ideal of S. Therefore f is a rough fuzzy prime
ideal of S. ¤

Theorem 4.9. Let Θ be a congruence on a Γ-semigroup S. Then f is a Θ-
lower rough fuzzy prime ideal if and only if for all λ ∈ [0, 1], if Θ(fλ) 6= ∅, then
fλ is a Θ-lower rough prime ideal of S.

Proof. By Theorem 4.5 and Lemma 4.7(i), we can obtain the conclusion easily.
¤

Theorem 4.10. Let Θ be a congruence on a Γ-semigroup S. Then f is a
Θ-upper rough fuzzy prime ideal if and only if for all λ ∈ [0, 1], if fS

λ 6= ∅, then
fS

λ is a Θ-upper rough prime ideal of S.

Proof. By Theorem 4.6 and Lemma 4.7(ii), we can obtain the conclusion easily.
¤
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