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Abstract

Since upper and lower approximations could be induced from the rough set structures, rough
sets are considered as approximations. The concept of fuzzy rough sets was proposed by
replacing crisp binary relations with fuzzy relations by Dubois and Prade. In this paper, we
introduce and investigate some properties of intuitionistic fuzzy rough approximation operators
and intuitionistic fuzzy relations by means of topology.
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1. Introduction

A Chang’s fuzzy topology [1] is a crisp subfamily of fuzzy sets, and hence fuzziness in the
notion of openness of a fuzzy set has not been considered, which seems to be a drawback in
the process of fuzzification of the concept of topological spaces. In order to give fuzziness
of the fuzzy sets, Çoker [2] introduced intuitionistic fuzzy topological spaces using the
idea of intuitionistic fuzzy sets which was proposed by Atanassov [3]. Also Çoker and
Demirci [4] defined intuitionistic fuzzy topological spaces in Šostak’s sense as a generalization
of smooth topological spaces and intuitionistic fuzzy topological spaces. Since then, many
researchers [5–9] investigated such intuitionistic fuzzy topological spaces.

On the other hand, the theory of rough sets was proposed by Z. Pawlak [10]. It is a
new mathematical tool for the data reasoning, and it is an extension of set theory for the
research of intelligent systems characterized by insufficient and incomplete informations. The
fundamental structure of rough set theory is an approximation space. Based on rough set
theory, upper and lower approximations could be induced. By using these approximations,
knowledge hidden in information systems may be exposed and expressed in the form of
decision rules(see [10, 11]). The concept of fuzzy rough sets was proposed by replacing crisp
binary relations with fuzzy relations by Dubois and Prade [12]. The relations between fuzzy
rough sets and fuzzy topological spaces have been studied in some papers [13–15].

The main interest of this paper is to investigate characteristic properties of intuitionistic
fuzzy rough approximation operators and intuitionistic fuzzy relations by means of topology.
We prove that the upper approximation of a set is the set itself if and only if the set is a lower
set whenever the intuitionistic fuzzy relation is reflexive. Also we have the result that if an
intuitionistic fuzzy upper approximation operator is a closure operator or an intuitionistic
fuzzy lower approximation operator is an interior operator in the intuitionistic fuzzy topology,
then the order is an preorder.
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2. Preliminaries

Let X be a nonempty set. An intuitionistic fuzzy set A is an
ordered pair

A = (µA, νA)

where the functions µA : X → I and νA : X → I denote
the degree of membership and the degree of nonmembership
respectively and µA + νA ≤ 1(see [3]). Obviously, every fuzzy
set µ in X is an intuitionistic fuzzy set of the form (µ, 1̃− µ).

Throughout this paper, ‘IF’ stands for ‘intuitionistic fuzzy.’
I ⊗ I denotes the family of all intuitionistic fuzzy numbers
(a, b) such that a, b ∈ [0, 1] and a + b ≤ 1, with the order
relation defined by

(a, b) ≤ (c, d) iff a ≤ c and b ≥ d.

For any IF set A = (µA, νA) of X , the value

πA(x) = 1− µA(x)− νA(x)

is called an indeterminancy degree(or hesitancy degree) of x to
A(see [3]). Szmidt and Kacprzyk call πA(x) an intuitionistic
index of x in A(see [16]). Obviously

0 ≤ πA(x) ≤ 1, ∀x ∈ X.

Note πA(x) = 0 iff νA(x) = 1− µA(x). Hence any fuzzy set
µA can be regarded as an IF set (µA, νA) with πA = 0.

IF(X) denotes the family of all intuitionistic fuzzy sets in X ,
and cIF(X) denotes the family of all intuitionistic fuzzy sets
in X with constant hesitancy degree, i.e., if A ∈ cIF(X), then
πA = c for some constant c ∈ [0, 1). When we process basic
operations on IF(X), we do as in [3].

Definition 2.1. ( [2, 17]) Any subfamily T of IF(X) is called
an intuitionistic fuzzy topology on X in the sense of Lowen(
[18]), if

(1) for each (a, b) ∈ I ⊗ I , (̃a, b) ∈ T ,

(2) A,B ∈ T implies A ∩B ∈ T ,

(3) {Aj | j ∈ J} ⊆ T implies
⋃

j∈J Aj ∈ T .

The pair (X, T ) is called an intuitionistic fuzzy topological
space. Every member of T is called an intuitionistic fuzzy
open set in X . Its complement is called an intuitionistic fuzzy
closed set in X . We denote T C = {A ∈ IF(X) | AC ∈ T }.
The interior and closure of A denoted by int(A) and cl(A)

respectively for each A ∈ IF(X) are defined as follows:

int(A) or intT (A) =
⋃
{B ∈ T | B ⊆ A},

cl(A) or clT (A) =
⋂
{B ∈ T C | A ⊆ B}.

An IF topology T is called an Alexandrov topology [19] if
(2) in Definition 2.1 is replaced by

(2)′ {Aj | j ∈ J} ⊆ T implies
⋂
j∈J

Aj ∈ T .

Definition 2.2. ( [20]) An IF set R on X × X is called an
intuitionistic fuzzy relation on X . Moreover, R is called

(i) reflexive if R(x, x) = (1, 0) for all x ∈ X ,

(ii) symmetric if R(x, y) = R(y, x) for all x, y ∈ X ,

(iii) transitive if R(x, y) ∧R(y, z) ≤ R(x, z) for all x, y, z ∈
X ,

A reflexive and transitive IF relation is called an intuitionistic
fuzzy preorder. A symmetric IF preorder is called an intu-
itionistic fuzzy equivalence. An IF preorder on X is called an
intuitionistic fuzzy partial order if for any x, y ∈ X , R(x, y) =
R(y, x) = (1, 0) implies that x = y.

Let R be an IF relation on X . R−1 is called the inverse rela-
tion of R if R−1(x, y) = R(y, x) for any x, y ∈ X . Also, RC

is called the complement ofR ifRC(x, y) =
(
νR(x,y), µR(x,y)

)
for any x, y ∈ X when R(x, y) =

(
µR(x,y), νR(x,y)

)
. It is ob-

vious that R−1 6= RC .

Definition 2.3. ( [21]) Let R be an IF relation on X . The pair
(X,R) is called an intuitionistic fuzzy approximation space.
The intuitionistic fuzzy lower approximation of A ∈ IF(X)

with respect to (X,R), denoted by R(A), is defined as follows:

R(A)(x) =
∧
y∈X

(RC(x, y) ∨A(y)).

Similarly, the intuitionistic fuzzy upper approximation of A ∈
IF(X) with respect to (X,R), denoted by R(A), is defined as
follows:

R(A)(x) =
∨
y∈X

(R(x, y) ∧A(y)).

The pair (R(A), R(A)) is called the intuitionistic fuzzy rough
set of A with respect to (X,R).
R : IF(X) → IF(X) and R : IF(X) → IF(X) are called

the intuitionistic fuzzy lower approximation operator and the
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intuitionistic fuzzy upper approximation operator, respectively.
In general, we refer to R and R as the intuitionistic fuzzy rough
approximation operators.

Proposition 2.4. ( [17, 21]) Let (X,R) be an IF approximation
space. Then for any A,B ∈ IF(X), {Aj | j ∈ J} ⊆ IF(X)

and (a, b) ∈ I ⊗ I ,

(1) R((̃1, 0)) = (̃1, 0), R((̃0, 1)) = (̃0, 1),

(2) A ⊆ B ⇒ R(A) ⊆ R(B), R(A) ⊆ R(B),

(3) R(AC) = (R(A))C , R(AC) = (R(A))C ,

(4) R(A ∩B) = R(A) ∩R(B), R(A ∪B) = R(A) ∪R(B),

(5) R
(⋂

j∈J Aj

)
=
⋂

j∈J

(
R(Aj)

)
,

R
(⋃

j∈J Aj

)
=
⋃

j∈J

(
R(Aj)

)
,

(6) R
(
(̃a, b)∪A

)
= (̃a, b)∪R(A), R

(
(̃a, b)∩A

)
= (̃a, b)∩R(A).

Remark 2.5. Let (X,R) be an IF approximation space. Then

R
(
x(1,0)

)
(y) =

∨
z∈X

(R(y, z) ∧ x(1,0)(z)) = R(y, x),

R
(
xC(1,0)

)
(y) =

∧
z∈X

(RC(y, z) ∨ xC(1,0)(z)) = RC(y, x).

Let (X,R) be an IF approximation space. (X,R) is called a
reflexive(resp., preordered) intuitionistic fuzzy approximation
space, if R is a reflexive intuitionistic fuzzy relation(resp., an
intuitionistic fuzzy preorder). If R is an intuitionistic fuzzy par-
tial order, then (X,R) is called a partially ordered intuitionistic
fuzzy approximation space. An intuitionistic fuzzy preorder
R is called an intuitionistic fuzzy equality, if R is both an intu-
itionistic fuzzy equivalence and an intuitionistic fuzzy partial
order.

Theorem 2.6. ( [17, 21]) Let (X,R) be an IF approximation
space. Then

(1) R is reflexive

⇔ ∀A ∈ IF(X), R(A) ⊆ A

⇔ ∀A ∈ IF(X), A ⊆ R(A).

(2) R is transitive

⇔ ∀A ∈ IF(X), R(A) ⊆ R
(
R(A)

)
⇔ ∀A ∈ IF(X), R

(
R(A)

)
⊆ R(A).

3. IF Rough Approximation Operator

Definition 3.1. ( [22]) Let (X,R) be an IF approximation
space. Then A ∈ IF(X) is called an intuitionistic fuzzy up-
per set in (X,R) if

A(x) ∧R(x, y) ≤ A(y), ∀x, y ∈ X.

Dually, A is called an intuitionistic fuzzy lower set in (X,R) if
A(y) ∧R(x, y) ≤ A(x) for all x, y ∈ X .

LetR be an IF preorder onX . For x, y ∈ X , the real number
R(x, y) can be interpreted as the degree to which ‘x ≤ y’ holds
true. The condition A(x) ∧R(x, y) ≤ A(y) can be interpreted
as the statement that if x is in A and x ≤ y, then y is in A.
Particularly, if R is an IF equivalence, then an IF set A is an
upper set in (X,R) if and only if it is a lower set in (X,R).

The classical preorder x ≤ y can be naturally extended to
R(x, y) = (1, 0) in an IF preorder. Obviously, the notion of IF
upper sets and IF lower sets agrees with that of upper sets and
lower sets in classical preordered space.

Proposition 3.2. Let (X,R) be an IF approximation space and
A ∈ IF(X). Then the following are equivalent:

(1) R(A) ⊆ A.

(2) A is a lower set in (X,R).

(3) A is an upper set in (X,R−1).

Proof. (1) ⇒ (2). Suppose that R(A) ⊆ A. Since for each
x ∈ X , ∨

y∈X

(
A(y) ∧R(x, y)

)
= R(A)(x) ≤ A(x),

we have
A(y) ∧R(x, y) ≤ A(x).

Thus A is a lower set in (X,R).
(2)⇒ (3). This is obvious.
(3)⇒ (1). Suppose that A is an upper set in (X,R−1). Then

for any x, y ∈ X , A(x) ∧ R−1(x, y) ≤ A(y). So A(x) ∧
R(y, x) ≤ A(y). Thus

R(A)(y) =
∨
x∈X

(
A(x) ∧R(y, x)

)
≤ A(y).

Hence R(A) ⊆ A.
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Corollary 3.3. Let (X,R) be an IF approximation space and
A ∈ IF(X). If R is reflexive, then the following are equivalent:

(1) R(A) = A.

(2) A is a lower set in (X,R).

(3) A is an upper set in (X,R−1).

Proof. This holds by Theorem 2.6 and Proposition 3.2.

Proposition 3.4. Let (X,R) be an IF approximation space and
A ∈ IF(X). Then the following are equivalent:

(1) R(A) ⊇ A.

(2) AC is a lower set in (X,R).

(3) AC is an upper set in (X,R−1).

Proof. (1) ⇒ (2). Suppose that R(A) ⊇ A. Since for each
x ∈ X , ∧

y∈X

(
A(y) ∨RC(x, y)

)
= R(A)(x) ≥ A(x),

we have
A(y) ∨RC(x, y) ≥ A(x),

AC(y) ∧R(x, y) ≤ AC(x).

Thus AC is a lower set in (X,R).
(2)⇒ (3). This is obvious.
(3) ⇒ (1). Suppose that AC is an upper set in (X,R−1).

Then for any x, y ∈ X , AC(x) ∧ R−1(x, y) ≤ AC(y). So
AC(x) ∧R(y, x) ≤ AC(y). Thus

A(x) ∨RC(y, x) ≥ A(y),∀x, y ∈ X.

So
R(A)(y) =

∧
x∈X

(
A(x) ∨RC(y, x)

)
≥ A(y).

Hence R(A) ⊇ A.

Corollary 3.5. Let (X,R) be an IF approximation space and
A ∈ IF(X). If R is reflexive, then the following are equivalent:

(1) R(A) = A.

(2) AC is a lower set in (X,R).

(3) AC is an upper set in (X,R−1).

Proof. This holds by Theorem 2.6 and the above proposition.

For each z ∈ X , we define IF sets [z]R : X → I ⊗ I by
[z]R(x) = R(z, x), and [z]R : X → I ⊗ I by [z]R(x) =

R(x, z).

Theorem 3.6. Let (X,R) be an IF approximation space. Then

(1) R is reflexive

⇔ ∀x ∈ X, [x]R(x) = (1, 0)

⇔ ∀x ∈ X, [x]R(x) = (1, 0).

(2) R is symmetric

⇔ ∀x ∈ X, [x]R = [x]R

⇔ ∀A ∈ IF(X), A is a lower set iff A is an upper set.

(3) R is transitive

⇔ ∀x ∈ X, [x]R is a lower set in (X,R)

⇔ ∀x ∈ X, [x]R is an upper set in (X,R)

⇔ ∀A ∈ IF(X), R
(
A
)

is a lower set in (X,R).

Proof. (1) and (2) are obvious. (3) By Proposition 3.2,

∀A ∈ IF(X), R
(
A
)

is a lower set

⇔ ∀A ∈ IF(X), R
(
R(A)

)
⊆ R(A)

⇔ R is transitive

⇔ ∀x, y, z ∈ X, R(x, y) ∧R(y, z) ≤ R(x, z)

⇔ ∀x, y, z ∈ X, R(x, y) ∧ [z]R(y) ≤ [z]R(x)

⇔ ∀x ∈ X, [x]R is a lower set.

Also,

R
(
A
)

is a lower set

⇔ ∀x, y, z ∈ X, R(x, y) ∧R(y, z) ≤ R(x, z)

⇔ ∀x, y, z ∈ X, [x]R(y) ∧R(y, z) ≤ [x]R(z)

⇔ ∀x ∈ X, [x]R is an upper set.

Proposition 3.7. Let (X,R) be an IF approximation space.
Then
R is symmetric

⇔ ∀(x, y) ∈ X ×X, R(xC(1,0))(y) = R(yC(1,0))(x)
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⇔ ∀(x, y) ∈ X ×X, R(x(1,0))(y) = R(y(1,0))(x).

Proof. By Remark 2.5,R(xC(1,0))(y) = RC(y, x) = RC(x, y) =

R(yC(1,0))(x), because R is symmetric. Similarly we have that
R(x(1,0))(y) = R(y, x) = R(x, y) = R(y(1,0))(x).

Theorem 3.8. Let R be an IF relation on X and let T be an IF
topology on X . If one of the following conditions is satisfied,
then R is an IF preorder.

(1) R is a closure operator of T .

(2) R is an interior operator of T .

Proof. Suppose that T satisfies (1). By Remark 2.5, R
(
x(1,0)

)
(y) = R(y, x) for each x ∈ X . Since R is a closure operator
of T , for each x ∈ X ,

R(x, x) = R
(
x(1,0)

)
(x) = clT

(
x(1,0)

)
(x)

≥
(
x(1,0)

)
(x) = (1, 0).

Thus R is reflexive. For any x, y, z ∈ X , let clT
(
z(1,0)

)
(y) =

(a, b). Then by Remark 2.5 and Proposition 2.4,

R(x, y) ∧R(y, z)

= R
(
y(1,0)

)
(x) ∧R

(
z(1,0)

)
(y) = R

(
y(1,0)

)
(x) ∧ clT

(
z(1,0)

)
(y)

= R
(
y(1,0)

)
(x) ∧ (a, b) = R

(
(a, b) ∧ y(1,0)

)
(x)

= clT
(
(a, b) ∧ y(1,0)

)
(x) = clT

(
clT
(
z(1,0)

)
(y) ∧ y(1,0)

)
(x)

≤ clT
( ⋃
y∈X

[clT
(
z(1,0)

)
(y) ∧ y(1,0)]

)
(x) = clT

(
clT
(
z(1,0)

))
(x)

= clT
(
z(1,0)

)
(x) = R(x, z).

Hence R is transitive. Therefore R is an IF preorder.
Similarly we can prove for the case of (2).

Definition 3.9. For each A ∈ IF(X), we define

RA = {(x, y) ∈ X ×X | A(x) > A(y)}.

Obviously, RA = ∅ iff A = (̃a, b) for some (a, b) ∈ I ⊗ I
or A(x) and A(y) are non-comparable for all x, y ∈ X .

Proposition 3.10. Let (X,R) be an IF approximation space.
Let A be an IF set with constant hesitancy degree, i.e., A ∈
cIF(X) with RA 6= ∅. Then we have

(1) R(A) ⊇ A ⇔ RC(x, y) ≥ A(x) ∨ A(y) for all (x, y) ∈
RA,

(2) R(A) ⊆ A⇔ R(y, x) ≤ A(x)∧A(y) for all (x, y) ∈ RA.

Proof. (1) (⇒) Suppose that R(A) ⊇ A. Note that for each
x ∈ X , ∧

y∈X

(
A(y) ∨RC(x, y)

)
= R(A)(x) ≥ A(x).

Then A(y) ∨ RC(x, y) ≥ A(x) for any x, y ∈ X . Since
A(x) > A(y) for each (x, y) ∈ RA, we have

RC(x, y) ≥ A(x) = A(x) ∨A(y) for all (x, y) ∈ RA.

(⇐) Suppose that for each (x, y) ∈ RA, R
C(x, y) ≥ A(x) ∨

A(y). Let z ∈ X .
(i) If A(z) > A(y), then

A(y) ∨RC(z, y) ≥ A(y) ∨ (A(z) ∨A(y)) ≥ A(z).

(ii) If A(z) ≤ A(y), then

A(y) ∨RC(z, y) ≥ A(y) ∨
(
A(z) ∨A(y)

)
≥ A(y) ≥ A(z).

Hence R(A)(z) =
∧

y∈X
(
A(y) ∨ RC(z, y)

)
≥ A(z) for any

z ∈ X . Thus R(A) ⊇ A.
(2) (⇒) Suppose that R(A) ⊆ A. Note that for each y ∈ X ,∨

x∈X

(
A(x) ∧R(y, x)

)
= R(A)(y) ≤ A(y).

Then A(x)∧R(y, x) ≤ A(y) for any x, y ∈ X . Since A(x) >
A(y) for each (x, y) ∈ RA, we have

R(y, x) ≤ A(y) = A(x) ∧A(y).

(⇐) Suppose that for any (x, y) ∈ RA, R(y, x) ≤ A(x)∧A(y).
Let z ∈ X .
(i) If A(x) > A(z), then

A(x) ∧R(z, x) ≤ A(x) ∧
(
A(x) ∧A(z)

)
≤ A(z).

(ii) If A(x) ≤ A(z), then

A(x) ∧R(z, x) ≤ A(x) ∧
(
A(x) ∧A(z)

)
≤ A(x) ≤ A(z).

Thus R(A)(z) =
∨

x∈X
(
A(x) ∧ R(z, x)

)
≤ A(z). Hence

R(A) ⊆ A.

Corollary 3.11. Let (X,R) be a reflexive IF approximation
space. Then for each A ∈ cIF(X) with RA 6= ∅,

(1) R(A) = A ⇔ RC(x, y) ≥ A(x) ∨ A(y) for all (x, y) ∈
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RA,

(2) R(A) = A⇔ R(y, x) ≤ A(x)∧A(y) for all (x, y) ∈ RA.

Proof. By the above proposition and the reflexivity of R, it can
be easily proved.

Let R1 and R2 be two IF relations on X . We denote R1 ⊆
R2 if R1(x, y) ≤ R2(x, y) for any x, y ∈ X . And R1 = R2 if
R1 ⊆ R2 and R2 ⊆ R1.

Proposition 3.12. Let (X,R1) and (X,R2) be two IF approx-
imation spaces. Then for each A ∈ IF(X),

(1) R1 ⊆ R2 ⇒ R1(A) ⊆ R2(A) and R1(A) ⊇
R2(A).

(2) (R1 ∪R2)(A) = R1(A) ∪ R2(A), (R1 ∪R2)(A) =

R1(A) ∩R2(A).

Proof. (1) For each x ∈ X ,

R1(A)(x) =
∨
y∈X

(
A(y) ∧ (R1)(x, y)

)
≤
∨
y∈X

(
A(y) ∧ (R2)(x, y)

)
= R2(A)(x).

Thus we have R1(A) ⊆ R2(A). Dually,

R1(A
C) ⊆ R2(A

C)⇔
(
R1(A

C)
)C ⊇ (R2(A

C)
)C

⇔ R1(A) ⊇ R2(A).

(2) For each x ∈ X ,

(R1 ∪R2)(A)(x)

=
∨
y∈X

(
A(y) ∧ (R1 ∪R2)(x, y)

)
=
∨
y∈X

(
A(y) ∧ (R1(x, y) ∨R2(x, y))

)
=
∨
y∈X

(
(A(y) ∧R1(x, y)) ∨ (A(y) ∧R2(x, y))

)
≤
( ∨
y∈X

(A(y) ∧R1(x, y))
)
∨
( ∨
y∈X

(A(y) ∧R2(x, y))
)

= R1(A)(x) ∨R2(A)(x)

=
(
R1(A) ∪R2(A)

)
(x).

Thus we have (R1 ∪R2)(A) ⊆ R1(A) ∪ R2(A). Moreover,
since R1 ⊆ R1 ∪ R2 and R2 ⊆ R1 ∪ R2, we have R1(A) ⊆
(R1 ∪R2)(A) and R1(A) ⊆ (R1 ∪R2)(A). Thus R1(A) ∪
R2(A) ⊆ (R1 ∪R2)(A). Hence we have (R1 ∪R2)(A) =

R1(A) ∪R2(A). By Proposition 2.4,

R1(A) ∩R2(A) = (R1(A
C))C ∩ (R2(A

C))C

= (R1(A
C) ∪R2(A

C))C = ((R1 ∪R2)(A
C))C = (R1 ∪R2)(A).

Proposition 3.13. Let (X,R1) and (X,R2) be two reflexive
IF approximation spaces. Then for each A ∈ IF(X),

(1) R2

(
R1(A)

)
⊆ (R1 ∪R2)(A) and R1

(
R2(A)

)
⊆ (R1 ∪R2)(A).

(2) R2

(
R1(A)

)
⊇ (R1 ∪R2)(A) and R1

(
R2(A)

)
⊇ (R1 ∪R2)(A).

Proof. (1) By Theorem 2.6, R2

(
R1(A)

)
⊆ R2(A) and

R2

(
R1(A)

)
⊆ R1(A). Thus we have

R2

(
R1(A)

)
⊆ R1(A) ∩R2(A) ⊆ (R1 ∪R2)(A).

Similarly, we can prove that R1

(
R2(A)

)
⊆ (R1 ∪R2)(A).

(2) The proof is similar to (1).

Proposition 3.14. Let (X,R1) and (X,R2) be two IF approxi-
mation spaces. If R1 is reflexive, R2 is transitive and R1 ⊆ R2,
then

R1

(
R2(A)

)
= R2(A) and R1

(
R2(A)

)
= R2(A).

Proof. By Theorem 2.6, R1

(
R2(A)

)
⊇ R2(A). For each

x ∈ X , by R1 ⊆ R2 and the transitivity of R2, we have

R1

(
R2(A)

)
(x) =

∨
y∈X

(
R2(A)(y) ∧R1(x, y)

)
=
∨
y∈X

(( ∨
z∈X

(A(z) ∧R2(y, z))
)
∧R1(x, y)

)
=
∨
y∈X

( ∨
z∈X

(
(A(z) ∧R2(y, z)) ∧R1(x, y)

))
=
∨
y∈X

( ∨
z∈X

(A(z) ∧
(
R2(y, z) ∧R1(x, y))

))
≤
∨
y∈X

( ∨
z∈X

(A(z) ∧
(
R2(y, z)) ∧R2(x, y)

))
≤
∨
y∈X

( ∨
z∈X

(A(z) ∧R2(x, z))
)

=
∨
z∈X

(A(z) ∧R2(x, z)) = R2(A)(x).

Thus R1

(
R2(A)

)
⊆ R2(A). So R1

(
R2(A)

)
= R2(A). By
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Proposition 2.4,

R1

(
R2(A)

)
= R1

(
(R2(A

C))C
)
=
(
R1

(
R2(A

C)
))C

= (R2(A
C))C = R2(A).

4. Conclusion

We obtained characteristic properties of intuitionistic fuzzy
rough approximation operator and intuitionistic fuzzy relation
by means of topology. Particularly, we proved that the upper
approximation of a set is the set itself if and only if the set is a
lower set whenever the intuitionistic fuzzy relation is reflexive.
Also we had the result that if an intuitionistic fuzzy upper
approximation operator is a closure operator or an intuitionistic
fuzzy lower approximation operator is an interior operator in
the intuitionistic fuzzy topology, then the order is an preorder.
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