• Title/Summary/Keyword: Rotor-Stator

Search Result 1,061, Processing Time 0.024 seconds

A Performance of Single Phase Switched Reluctance Motor having both Radial and Axial air gap

  • 임준영;정윤철;권경안
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.184-188
    • /
    • 1999
  • Switched Reluctance Motor has doubly salient poles in stator and rotor, windings are wound in just stator and no magnet or windings on the rotor. This configuration is robust mechanically and thermally. The inverter of SRM is more robust than that of induction or brushless DC(BLDC) motor, but still its drive is comparatively expensive for home appliance. To drive the conventional three or four-phase SRM, 6 to 8 power switches are required when asymmetric bridge inverter is employed. Generally, more than 50% of the cost for the SRM drive is allocated to power devices and gate drives. This paper proposed single phase SRM that have both radial and axial air gaps. The stator and rotor were stacked with two types of stampings that have different diameters. This configuration is very effective to increase align inductance(Lmax). The high value of Lmax increases the motor efficiency and power density. The proposed single phase SRM(Claw SRM) can be driven by only two power switches. To show the validity of the proposed idea, the analysis using finite element method(FEM) and experimental works are carried out. The proposed SPSRM can be driven with high efficiency and can be made compactly and inexpensively because of high value of align inductance and less number of switches. For the comparison, we used same stator for three-phase and single phase, and slightly different stator and rotor for proposed single phase SRM(Claw SRM)

  • PDF

A High-Performance Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control

  • Kim Min-Huei;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee;Hwang Dong-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.355-359
    • /
    • 2001
  • This paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with DTC. The control system consists of stator flux observer, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by observed stator flux-linkage space vector. The estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. It does not require the knowledge of any motor parameters, nor particular care for motor starting, In order to prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed sensorless control system is shown a good speed control response characteristic results and high performance features in 50/1000 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

  • PDF

Flow-induced Vibration Analysis for Cascades with Stator-rotor Interaction and Viscosity Effect (스테이터-로터 상호간섭 및 점성효과를 고려한 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Park, Oung;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1082-1089
    • /
    • 2006
  • In this study, advanced computational analysis system has been developed in order to investigate flow-induced vibration(FIV) phenomenon for general stator-rotor cascade configurations. Relative movement of the rotor with respect to stator is reflected by modeling Independent two computational domains. Fluid domains are modeled using the unstructured grid system with dynamic moving and local deforming methods. Unsteady, Reynolds-averaged Wavier-stokes equations with one equation Spalart-Allmaras and two-equation SST ${\kappa}-{\varepsilon}$ turbulence models are solved for unsteady flow problems and also relative moving and vibration effects of the rotor cascade are fully considered. A coupled implicit time marching scheme based on the Newmark integration method is used for computing the governing equations of fluid-structure interaction problems. Detailed vibration responses for different flow conditions are presented and then vibration characteristics are physically investigated in the time domain as computational virtual tests.

Effect of Pressing Force Applied to a Rotor on Revolution Characteristics in the Windmill Type Ultrasonic Motor (풍차형 초음파 전동기의 회전자에 인가된 힘이 회전특성에 미치는 영향)

  • 김영균;김진수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.390-395
    • /
    • 2000
  • The ultrasonic motor have recently begun to be used for certain unique practical utilizations in the fields of industrial medical consumer and automotive applications. Ultrasonic motor stimulated to ultrasonic oscillations by piezoelectrics to drive a rotor via friction contact. The metal and ceramic composite component was used as the stator element to generate ultrasonic vibrations. The ultrasonic motor used here was the windmill type ultrasonic motor operated by single-phase AC source. The windmill type ultrasonic motors has only three components; a stator element of two windmill shape slotted metal endcaps a rotor and a bearing. In this paper a prototype motor with 11.35 mm diameter was fabricated then relationship between the pressing force applied to a rotor and the rotation characteristic of windmill type ultrasonic motor are investigated when stator’s slots was changed from 4, 6, 8 and thickness changed from 0.15, 0.20 mm, respectively. Optimum pressing force applied to a rotor in the six stators was 1.2 mN.

  • PDF

A High-Performnce Sensorloss Control System of Reluctance Synchronous Motor with Direct Torque Control by Consideration of Nonlinerarly Inductances

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.146-153
    • /
    • 2002
  • this paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The problem of DTC for high-dynamic performance RSM drive is generating a nonlinear torque due to a saturated nonlinear inductance curve with various load currents. The control system consists of stator flux observer, compensating inductance look-up table, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source unverter, and TMS320C31 DSP controller. The stator flux observer is based on the combined voltage and current model with stator flux feedback adapitve control that inputs are the compensated inductances, current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operation area. It does not requrie the knowledge of any montor paramenters, nor particular care for moter starting, In order to prove the suggested control algorithm, we have simulation and testing at actual experimental system. The developed sensorless control system is showing a good speed control response characterisitic result and high performance features in 20/1500 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

Grid Connection Algorithm for Doubly-Fed Induction Generator Using Rotor Side PWM Inverter-Converter (회전자측 PWM 인버터-컨버터를 사용한 이중여자 유도형 풍력 발전기의 계통 투입 알고리즘)

  • 정병창;권태화;송승호;김일환
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.528-534
    • /
    • 2003
  • A grid connection algorithm is proposed for the doubly-fed induction generator (DFIG) which is widely adopted in high power variable speed wind turbine. Before the stator of DFIG is connected to grid, rotor-side converter is used to control the induced stator voltage. As a result, the stator transient current is limited below the rate value during the connection by the proposed synchronization of the stator voltage to the grid voltage. A wind power generation simulator using DC motor and wound-rotor induction generator is built and the dynamic characteristics of proposed algorithm is verified experimentally.

The Characteristics of Screw-shaped Piezoelectric Actuator (나사형 압전 액츄에이터의 특성)

  • 육형상;정수현;임기조;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.21-24
    • /
    • 1994
  • A piezoelectric actuator. which is composed of a piezoelectrically driven stator and a rotor, Is made and the characteristics are investigated experimentally is a new ultrasonic actuator which transforms rotary motion to linear one is proposed and proved to work successfully. If an ultrasonic wave is excited to propagate in the stator, particles on the internal surface move elliptically. Since the internal surface is machined as an internal thread and an external thread(rotor) is put into the stator. the external thread is rotated through the friction force and moved in the axial direction. The traveling wave is excited by a piezoelectric element bonded to the stator. This idea is firstly proposed by S. Ueha, et al. in 1987. However, efficiency of their actuator is less than 3%. In this study, in order to improve characteristics of this type actuator, we used various pitches and number of the screw thread, and materials of rotor, and we obtained good charcteristics.

  • PDF

A Method for Indentifying Broken Rotor Bar and Stator Winding Fault in a Low-voltage Squirrel-cage Induction Motor Using Radial Flux Sensor

  • Youn, Young-Woo;Hwang, Don-Ha;Sun, Jong-Ho;Kang, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.666-670
    • /
    • 2011
  • In this paper, a method for detecting broken rotor bar and stator winding fault in a low voltage squirrel-case induction motor using an air-gap flux variation analysis is proposed to develop a simple and low cost diagnosis technique. To measure the leakage flux in radial direction, a radial flux sensor is designed as a search coil and installed between stator slots. The proposed method is able to identify two kinds of motor faults by calculating load condition of motors and monitoring abnormal signals those are related with motor faults. Experimental results obtained on 7.5kW three-phase squirrel-cage induction motors are discussed to verify the performance of the proposed method.

Characteristics Analysis of Segmental Rotor Type 3-Phase SRMs (분절회전자형 3상 SRM의 특성해석)

  • Xu, Zhenyao;Lee, Dong-Hee;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this study, two types of switched reluctance motors (SRMs) with segmental rotors are presented in detail. The first is a 6/5 segmental rotor type, whereas the second is a 12/8 segmental rotor type. Both motor types have the same stator, rotor, and winding configurations. The stator is constructed with special stator poles, namely, exclusively designed exciting and auxiliary poles. The rotor is constructed from a series of discrete segments, each of which is embedded into the nonmagnetic isolator. The windings are only wound on the exciting poles, and no winding is wound on the auxiliary poles. Given these configurations, short flux paths and high flux-linkage utilization rate are achieved in the proposed motors, which may reduce the magnetomotive force requirement and increase the electrical utilization of a machine. To verify the effectiveness of the proposed motors, their characteristics, such as magnetic flux distribution, flux-linkage, torque, radial force, and efficiency, are analyzed and compared with those of a conventional 12/8 SRM. Meanwhile, two prototypes, one for each proposed segmental rotor type, are also designed and manufactured. Finally, the validity of the proposed motors is further verified by test results.

Study on the Fire Risk in Locked-Rotor Condition of Single-Phase Induction Motor (단상 유도전동기의 구속운전조건에서 화재 위험성에 관한 연구)

  • Ji, Hong-Keun;Song, Jae-Yong
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.64-71
    • /
    • 2020
  • In this paper, the fire risk of a single-phase induction motor under a locked-rotor condition is described. In general, motor failure occurs in the locked-rotor condition owing to poor rotation of the rotor. Large inrush current flows when a motor starts, which is approximately 2-15 times larger than the rated current. In a single-phase induction motor under the locked-rotor condition, a large current that corresponds to the inrush current flows continuously through the stator winding. Such an overcurrent rises the temperature inside the stator winding, and thus the insulating material may catch fire. In this study, the restrained operating condition of the single-phase induction motor was simulated. Further, the degree of the overcurrent and temperature rise in the stator winding was measured. The experimental results, confirmed that the overcurrent was seven times larger than the rated current and the fire commenced at a temperature of approximately 300 ℃ inside the stator winding.