• 제목/요약/키워드: Rotor system

검색결과 2,182건 처리시간 0.032초

복합형 무인 회전익기 로터드라이브시스템 개념 연구를 위한 특허 조사 및 분석 (Patents Survey and Analysis on a Conceptual Study of Rotor Drive Systems of Combined Unmanned Rotorcraft)

  • 김근택
    • 항공우주시스템공학회지
    • /
    • 제10권4호
    • /
    • pp.75-83
    • /
    • 2016
  • 본 연구에서는 복합형 무인 회전익기의 로터드라이브시스템 개발 개념을 정립하기 위해 관련 특허를 조사하고 분석하였다. 특허를 로터드라이브시스템 개발의 관점에서 10개의 유사한 그룹별로 나누어 세부적인 검토 및 분석을 수행하였다. 결과적으로, 특허 분석 결과를 통해 비행체의 로터드라이브시스템 개발 개념을 제안한다.

Dynamic Model to Predict Effect of Race Waviness on Vibrations Associated with Deep-Groove Ball Bearing

  • Hwang, Pyung;Nguyen, Van Trang
    • Tribology and Lubricants
    • /
    • 제30권1호
    • /
    • pp.64-70
    • /
    • 2014
  • This paper presents a numerical model for investigating the structural dynamics response of a rigid rotor supported on deep-groove ball bearings. The numerical model was used to investigate the influence of race waviness on the dynamic characteristics of a rotor ball bearing system, which is very important from a design viewpoint. The forth-order Runge-Kutta numerical integration technique was applied to determine the time displacement response, Poincare map, and frequency spectra. The analysis demonstrated that the model can be used as a tool for predicting the nonlinear dynamic behavior of a rotor ball bearing system under different operating conditions. The results of this study may help further understanding of the nonlinear dynamics of a rotor bearing system.

준정상 공력이론을 이용한 2자유도계 로터-낫셀 시스템의 훨플러터 해석 (Whirl Flutter Analysis of a 2-DOF Rotor-Nacelle System Using Quasisteady Aerodynamic Theory)

  • 김동현;양용준
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.843-850
    • /
    • 2005
  • In this study, simplified whirl flutter analyses using quasisteady aerodynamic theory have been Performed for a 2-DOF tiIt-rotor system with both pitch and Yaw motions of a rotor-nacelle. The present dynamic system consists of the rotor (propeller) , forming the gyroscopic and aerodynamic element, supported horizontally by a pylon that is pivoted at some wing attachment point. Several design parameters for rotor-nacelle system are considered to practically investigate the effects of whirl flutter stability.

절단 원추형 Squeeze Film Damper 베어링과 회전축계의 동특성에 관한 연구 (A Study on the Dynamic Characteristics of Truncated Cone Type Squeeze Film Damper Bearing and Rotor System)

  • 윤석철
    • 한국안전학회지
    • /
    • 제12권1호
    • /
    • pp.9-18
    • /
    • 1997
  • This paper is a study on the dynamic characteristics of truncated cone type squeeze film damper(SFD) bearing and rotor system. This model can alter the radial oil film gap which Is Important to the performance of rotor-bearing system and manufactured easily to change the shape concept of traditional circular type SFD bearing. In theoretical analysis, the oil film pressure distribution, the oil film force, the film damping coefficient and the eccentricity ratio, etc. were induced with regard to the film inertia effect. The film damping coefficients and optimum design parameters are calculated. When unbalance parameter U is greater than 0.2, the nonlinear vibration such as "Jump" phenomena appears in the vicinity of rotor critical speed. At this time, the increases of bearing parameter U, journal distance S, Reynolds number Re can control this unstable vibration. The experimental results show that SFD hearing and rotor system which are designed according to the design parameters in the stable region are operated stably in rotational speed 9,600rpm without nonsynchronous behavior.

  • PDF

초고속 원심분리 회전축계의 최적설계 (An Optimum Design of a Rotor-Bearing Spindle System for a Ultra Centrifuge)

  • 김종립;윤기찬;박종권
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.145-152
    • /
    • 1998
  • This paper presents an optimum design of a rotor-bearing spindle system for a ultra centrifuge (80,000 RPM) supported by ball bearings with nonlinear stiffness characteristics. To obtain the nonlinear bearing stiffnesses, a ball bearing is modeled in five degrees of freedom and is analyzed quasi-statically. The dynamic behaviors of the nonlinear rotor-bearing system are analyzed by using a transfer-matrix method iteratively. For optimization. we use the cost function that simultaneously minimizes the weight of a rotor and maximizes the separation margins to yield the critical speeds as far from the operating speed as possible. Augmented Lagrange Multiplier (ALM) method is employed for the nonlinear optimization problem. The result shows that the rotor-bearing spindle system is optimized to obtain 9.5% weight reduction and 21% separation margin.

  • PDF

무베어링 헬리콥터 로터 시스템의 동특성 해석 (Dynamic Characteristic Analyses of a Bearingless Helicopter Rotor System)

  • 기영중;윤철용;김덕관;김승호
    • 한국소음진동공학회논문집
    • /
    • 제22권2호
    • /
    • pp.187-192
    • /
    • 2012
  • Recently, KARI(Korea Aerospace Research Institute) has been developing a modern 11.5 m diameter four bladed bearingless main rotor system, and this rotor system can be used for 7,000 lb class helicopter. Flexbeam and torque tube can be considered as key structural components, and large elastic twist of flexbeam induced by pitch control motion of torque tube can influence the nonlinear aeroelastic behavior. In this paper, the dynamic characteristic analysis results of bearingless rotor system were presented. In order to construct a input model and validate the analysis procedures, calculated results using the comprehensive helicopter analysis program CAMRAD II were compared with the measured natural frequencies and lag damping data from small-scale wind tunnel test. Next, the analysis model was extended to a full-scale model, and the dynamic analysis results were presented.

스마트무인기 로터 피치각 리깅, 트랙킹 및 밸런싱 (Pitch Angle Rigging, Tracking and Balancing of Smart UAV Rotor System)

  • 이명규;김유신;최성욱
    • 항공우주시스템공학회지
    • /
    • 제3권3호
    • /
    • pp.17-23
    • /
    • 2009
  • KARI SUAV (Smart Unmanned Aerial Vehicle) program is currently on the phase of ground and flight test. SUAV is a tilt rotor aircraft having the capability of vertical take-off/landing and high speed forward flight. The SUAV rotor system is 3-bladed, gimbaled hub type, which is not common for conventional helicopter configuration. In this paper, detailed procedure and method of rotor pitch rigging, tracking and balancing were described based on the experience of SUAV ground test.

  • PDF

풍력발전 시스템용 유도발전기의 동특성 해석 (Dynamic characteristics analysis of wind-power generator rotor- bearing system)

  • 정순철;김덕수;이재응;고장욱;차종환;오시덕
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1032-1039
    • /
    • 2001
  • In this paper, modal analysis of wind-power generator rotor system was performed by using finite element method. Experimental modal analysis of generator rotor system was performed and the result were compared with analytical ones. Sensitivity method and localized modification method were used to update finite element model. As a result of updating finite element model, errors of natural freguency were reduced within 0.5% and MAC value was improved near by l. Stability characteristics of wind-power generator rotor-bearing system through harmonic analysis about several external force will be analyzed using finite element model.

  • PDF

자기베어링으로 지지되는 연성축계의 식별 및 강인 제어에 관한 연구 (A Study on the Identification and Robust Control of Flexible Rotor Supported by Magnetic Bearing)

  • 안형준;전수;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.3-6
    • /
    • 2000
  • The magnetic bearing system are intrinsically unstable, and need the feedback control of electromagnetic forces with measured displacements. So the controller design plays an important role in constructing high performance magnetic bearing system. In case of magnetic bearing system, the order of identified model is high because of unknown dynamics included in closed loop systems - such as sensor dynamics, actuator dynamics - and non-linearity of magnetic bearings itself. In this paper the identification and robust control of flexible rotor supported by magnetic bearing are discussed. We measure and identify overall system that contains not only flexible rotor model but also magnetic bearing and time delay. The structured and unstructured uncertainties are modeled that cover variations of natural frequencies, uncertainties in sensor and actuator gains and unmodeled dynamics. And desired performances are specified with several weighting function. Using augmented system that includes identified model, uncertainties, and weighting functions, μ-synthesis is applied to flexible rotor supported with magnetic bearing. The flexible rotor was spin up over the first flexible critical speed.

  • PDF

영상 기반 자동 착륙용 멀티로터 시스템 설계 및 개발 (Design and Fabrication of Multi-rotor system for Vision based Autonomous Landing)

  • 김규범;송승화;윤광준
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권6호
    • /
    • pp.141-146
    • /
    • 2012
  • 본 논문에서는 영상 기반 자동 착륙 시스템 개발과 이 시스템을 사용하는 멀티로터 플랫폼 개발에 대해서 소개 한다. 멀티로터 플랫폼은 뉴턴 오일러 개념을 근간으로 하는 강체 운동 모델링을 하였고, LQR 제어 기법을 통한 제어기 튜닝 및 시뮬레이션을 하였다. 영상기반 자동 착륙 시스템은 멀터로터 시스템에 탑재된 단일 카메라를 사용하여 추가적인 임무장비 없이 증강 현실 알고리즘을 사용하여 마커를 탐지하고 정밀한 착륙을 유도하도록 GCS와 연동 코드를 구현 하였다.