• Title/Summary/Keyword: Rotor Systems

Search Result 695, Processing Time 0.025 seconds

Dynamic Characteristics of Indeterminate Rotor Systems with Angular Contact Ball Bearings Subject to Axial and Radial Loads

  • Hong, Seong-Wook;Kang, Joong-Ok;Yung C. Shin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.61-71
    • /
    • 2002
  • This paper presents the dynamic analysis of indeterminate rotor systems with angular contact ball bearings subject to axial and radial loads. The reaction forces against applied radial loads significantly influence the dynamic characteristics of angular contact ball bearings. However, the reaction forces are hard to determine in the case of indeterminate rotor-bearing systems. To this end, this paper proposes a finite element model for indeterminate rotor systems with angular contact ball bearings. An improved bearing model is adopted which is originated from the Harris's bearing dynamic model. The bearing model is also extended to include centrifugal forces due to the ball and inner ring. This paper utilizes a new iterative algorithm for general, indeterminate rotor systems with angular contact ball bearings. This examples are provided to illustrate the dynamic characteristics of rotor systems with angular contact ball bearings subject to axial and radial loads. The experimental and numerical results prove that the proposed method is useful for the dynamic analysis of indeterminate rotor systems with angular contact ball bearings.

LINBAR DECOUPLING CONTROL OF ROTOR SPEED AND ROTOR FLUX IN INDUCTION MOTOR FOR HIGH DYNAMIC PERFORMANCE AND MAXIMAL POWER BFFICLENCY (동적 고성능과 최대 전력 효율을 위한 유도 전동기 회전자 속도와 회전자 자속의 선형 비간섭 제어)

  • Kim, Dong-Il;Ha, In-Joong;Ko, Myoung-Sam;Park, Jae-Wha
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.48-53
    • /
    • 1989
  • We attempt to achieve both high dynamic performance and maximal power efficiency by means of linear decoupling of rotor speed (or motor torque) and rotor flux. The induction motor with our controller possesses the input-output dynamic characteristics of a linear system such that the rotor speed (or motor torque) and the rotor flux are decoupled. The rotor speed (or motor torque) responses are not affected by abrupt changes in the rotor flux and vice versa. The rotor flux need not be measured but is estimated by the well-known flux simulator. The effect of large variation in the rotor resistance on the control performances is minimized by employing a parameter adaptation method. To illuminate the significance of our work. we present simulation and experimental results as well as mathematical performance analyses.

  • PDF

An Improved Substructure Synthesis Method for Unbalance Response Analysis of Rotor Bearing Systems (회전체 베어링계의 불균형 응답 해석을 위한 개선된 부분 구조 합성법)

  • 홍성욱;박종혁
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.71-82
    • /
    • 1996
  • The finite element analysis for rotor bearing systems has been an essential tool for design, identification, and diagnosis of rotating machinery. Among others, the unbalance response analysis is fundamental in the vibration analysis of rotor bearing systems because rotating unbalance is recognized as a common sourve of vibration in rotating machinery. However there still remains a problem in the aspect of computational efficiency for unbalance response analysis of large rotor bearing systems. Gyroscopic terms and local bearing parameters in rotor bearing systems often make matters worse in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and/or anisotropy. The present paper proposes an efficient method for unbalance responses of multi-span rotor bearing systems. An improved substructure synthesis scheme is introduced which makes it possible to compute unbalance responses of the system by coupling unbalance responses of substructures that are of self adjoint problem with small order matrices. The present paper also suggests a scheme to easily deal with gyroscopic tems and local, coupling or bearing parameters. The proposed method causes no errors even though the computational effort is reduced drastically. The present method is demonstrated through three test examples.

  • PDF

Stability Investigation of Rotor Systems by Complex Modal Analysis (복소 모드해석을 이용한 회전체의 안정성 분석)

  • Han, Dongju
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.4
    • /
    • pp.27-35
    • /
    • 2013
  • Identifying the stability of rotor systems is prerequisite for clear determination of the parameter identification and safety, through which operating conditions may be rationally ascertained. For this purpose, the complex modal analysis of periodically time-varying system has been introduced by transforming the relation between periodic eigen-vectors and the corresponding adjoint vectors into the latent value problem. Stability investigation associated with modal features for rotor systems is performed using numerical simulation based upon the analysis model.

Initial Rotor Position Detection of a Toroidal SRM Using the Rate of Change of Current (전류변화율을 이용한 토로이달 SRM의 초기위치 경출 방법)

  • Yang Hyong-Yeol;Lim Young-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.1
    • /
    • pp.26-32
    • /
    • 2005
  • Rotor position information is essential in the operation of the switched reluctance motor(SRM) drive for generation the phase current switching signals. When an incremental encoder is used as a rotor position sensor, the initial rotor position can not be detected. Some sensorless rotor position estimation methods also have the same problem. In these systems, to initially align the rotor, the forced alignment method has a delay and reverse rotation before the motor can start. Therefore it can not be acceptable for unidirectional drive systems. So the forced alignment method is not desirable in all drive systems and the research on the SRM drives should be directed to a system without rotor alignment. In this paper, a new detection method of initial rotor position using the rate of change of current is suggested. Firstly, di/dt versus θ/sub R/ reference table, which is the relation between the rate of change of current and rotor position, is generated and then the squared Euclidean distance method is used to estimate the rotor position based on the table. The simulated and experimental results are presented demonstrating the feasibility and accuracy of this method.

Development of Flexible Rotor Systems For Gas Turbine Engine (위험속도를 통과하는 회전체시스템 개발)

  • Lee, J.H.;Lee, Y.S.;Kim, K.S.;Kim, C.G.;Kim, M.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1065-1070
    • /
    • 2000
  • High speed rotor test rig was developed for flexible rotor systems which have its bending critical speed at 14000 rpm. In designing the flexible rotor systems, operating speed have to be escaped from the critical speed, due to large vibration. In this paper, dynamic characteristics of the rotor systems were analyzed and compared with test results. And the effect of allison ring damper and rotor balancing were examined both theoretically and experimentally. Finally, the magnitude of vibration was largely reduced at the critical speed.

  • PDF

An exact modeling method for dynamic analysis of multi-stepped rotor systems (다단 회전체계의 동적 해석을 위한 개선된 모델링 방법)

  • Park, Jong-Heuk;Hong, Seong-Wook;Lee, Chul;Kim, Jong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.200-205
    • /
    • 1998
  • Although discretization methods such as the transfer matrix method (TMM) and the finite element method (FEM) have played an important role in the design or analysis of rotor-bearing systems, continuous system modeling and analysis are often desirable especially for sensitivity analysis or design. The present paper proposes a comprehensive modeling procedure to obtain exact solution of general rotor-bearing systems. The proposed method considers a Timoshenko beam model and makes use of complex coordinate in the formulation. The proposed method provides exact eigensolutions and frequency response functions (FRFS) of general multi-stepped rotor-bearing systems. The first numerical example compares the proposed method with FEM. The numerical study proves that the proposed method is very efficient and useful for the analysis of rotor-bearing systems.

  • PDF

Estimation of the Unmeasured Unbalance Responses and Identification of Bearing Parameters in Flexible Rotor-Bearing Systems (회전체 베어링계의 불균형응답 간접추정과 베어링 매개변수 규명)

  • 홍성욱;이종원
    • Journal of KSNVE
    • /
    • v.2 no.3
    • /
    • pp.193-202
    • /
    • 1992
  • The unbalance response analysis is one of the essential area in the forced vibration analysis of rotor bearing systems because of it usefulness in balancing and diagnosis as well as identification of parameters involved in rotor bearing systems. However some unbalance responses are not measurable due to the fact that rotor bearing systems are often encapsulated by fixtures or safety protectors. In the present paper, an efficent estimation scheme for unmeasured unbalance responses in rotor bearing systems is developed. The fundamental fearture of the proposed method is characterized by the linear formulae to estimate the unbalance responses from the measured unbalance responses and the finite element auxilliary model equation which is constructed to be identical to the prototype excluding the uncertain parameters such as bearing coefficients. The identification formulae for bearing parameters are also derived by using the unbalance response and the finite elements auxiliary model. Simulation is provided to verify the effectiveness of the proposed method.

  • PDF

Design, Control, and Implementation of Small Quad-Rotor System Under Practical Limitation of Cost Effectiveness

  • Jeong, Seungho;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.324-335
    • /
    • 2013
  • This article presents the design, control, and implementation of a small quad-rotor system under the practical limitation of being cost effective for private use, such as in the cases of control education or hobbies involving radio-controlled systems. Several practical problems associated with implementing a small quad-rotor system had to be taken into account to satisfy this cost constraint. First, the size was reduced to attain better maneuverability. Second, the main control hardware was limited to an 8-bit processor such as an AVR to reduce cost. Third, the algorithms related to the control and sensing tasks were optimized to be within the computational capabilities of the available processor within one sampling time. A small quad-rotor system was ultimately implemented after satisfying all of the above practical limitations. Experimental studies were conducted to confirm the control performance and the operational abilities of the system.

Development of Simulation Program for Tilt Rotor Aircraft (틸트로터 항공기 비선형 시뮬레이션 프로그램 개발)

  • Yoo, Chang-Sun;Choi, Hyung-Sik;Park, Bum-Jin;Ahn, Sung-Jun;Kang, Young-Shin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.193-199
    • /
    • 2005
  • VTOL(Vertical Take-Off and Landing) aircraft is attractive due to the reason that it is not necessary to have long runway. However a rotorcraft has a definite limitation to fly at the high speed due to the stall at the tip of rotor. To solve this problem, tilt rotor, tilt wing and lift fan were researched and developed. It was verified that the tilt rotor aircraft among them was more effective in disk loading. On this basis, the tilt rotor aircraft has been made into XV-15, V-22, BA-609 and Eagle Eye. This paper shows a nonlinear simulation program for general tilt rotor aircraft that was developed in order to validate the flight characteristics of tilt rotor aircraft and verified through the simulation analysis.