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Robotics and Intelligent Systems Laboratory
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Abstract : We attempt to achieve both high
dynamic performance and maximal power effi-
ciency by means of linear decoupling of rotor
speed (or motor torque) and rotor flux. The in-
duction motor with our controller possesses the
input-output dynamic characteristics of a linear
system such that the rotor speed (or motor
torque) and the rotor flux are decoupled. The
rotor speed {or motor torque) responses are not
affected by abrupt changes in the rotor flux and
vice versa., The rotor flux need not be measured
but is estimaled by the well-known flux simula-
tor. The effect of large variation in the rotor
resistance on the control performances is mini-
mized by employing a parameter adaptation
method. To illuminate the significance of our

work, we present simulation and experimental re--

gults as well as mathematical performance analy-
Bse8.

Recently, many researchers have tried to im-
rove further the so called vector control (or
ield oriented control) method pioneered by
Blaschke {1]. In particular, the contirollers pro-

sed by Kuroce and Haneda [2], Koyama et al.
3], Ohnishi et al. [4], Lorenz and Lawson [5],
and Ho and Sen (6] force induction motors to
behave like DC motors by controlling rotor fluxes
constant. On the other hand, Luca and Ulivi [7],
Krzeminski [8], and Kim et al. [9] have shown
that the dynamic equations of induction motors
can be fully linearized by utilizing the recently
developed nonlinear feedback control theories
{10]-{14]. In their control methods, the rotor flux
need not be kept constant. However, for exact
linearization by nonlinear feedback control, the
parameters of the induction motor must be pre-
cisely known and the accurate information of the
motor flux is required.

In practice, rotor fluxes can be measured
through direct sensing of air gap fluxes with
flux-sensing coils or Hali-probes f1,15]. However,
it is more cost-effective to estimate rotor fluxes
based on the rotor circuit equations [3,9,16,17].
On the other hand, the parameters of the induc-
tion motor (in particular, rotor resistance)
change widely with temperature and/or magnetic
gaturation. Variations in parameters cause deteri-
oration of both dynamic and steady-state per-
formance of induction motor control systems [18].
Efficient identification algorithms for the rotor
resistance can be found in recent researches

,19].

Beside dynamic performance, there are other
important factors to be taken into account in the
controller design of induction motors. Among
them is power efficiency. Induction motors in
particular consume a ]arFe fraction of all electric
power in industrial fields, so control for high
ower efficiency is required to reduce energy
osses. Various control methods for high power
efficiency have been proposed by Kusko and
Galler [20], Park and Sul {21]), and Murata et al.
[22). However, these control methods for high
power efficiency can not control the induction
motor to behave like a linear system or may sac-—
rifice the dynamic performance of rotor speed.

In this paper, we attempt to control the in-
duction motor with high dynamic performance
and maximal gower efficlency by means of linear
decoupling of rotor speed and rotor flux. For
maximal power efficiency, the rotor flux need be
ad justed contmuousl{ depending on rotor speed
commands. Due - to linear decoupling of rotor
speed and rotor flux, this can be succeasfully
done without affecting rotor speed responses.
The rotor speed responses to input commands
follow the input-output dynamic characteristics
of a linear syastem. Direct measurement of the
rotor flux is not required to achieve linear de-
coupling of rotor speed and rotor flux. Perfor-
mances of our control scheme are robust with
respect to variations of induction motor parame-
ters since an identification algorithm for the ro-
tor resistance is used. The prior results do not
necessarily possess all these features. We pre-
sent the mathematical performance analysis of
our control scheme in the presence of uncer-
tamtf in the rotor resistance. The prior results
closely related to ours are discussed at length.
Both simulation and experimental results were
carried out to demonstrate the practical signifi-
cance of our results. In particular, our experi-
mental results show that recently developed
nonlinear feedback control techniques are of
practical use.

In the d-q coordinate frame rotating syn-
chronously with an angular speed s, the dy-
namic equations of a p-pole pair induction motor
are described by:

jds=—@1ids s iqs +B82¢Pdr +pastr ¢or +cVas ,

iqs=‘w=ids-miqs—paaﬂr¢dr+a.2¢qr+Cun,

dar=—84 ddr+8s ids + (s —pr )dar , (2.1)

&!qr*'ﬂ‘@qr"‘&iqs"(h‘?“r)@dr,

W =(~Dwr+Te~TL)/J,
where T. ie the generated torque given by

Te=Kr (bariqs —dqrids ). (2.2)
Here, Vas, Vus, and we are the control inputs.
The constants ¢, D, J, ¥r, and a1, i = 1,---,5
are the parameters of the induction motor, Defi-
nitions of the symbols and notations used fre-
quently in our developments are given in
Nomenclature.

It is well-known that, if ws is chosen as

s =pir +as iqs /dar (2.3)

the dynamic behavior of the induction motor af-
ter sufficient time is govermned by

ids =—a1 las+Ws igs +a2dar+cVas,
iqs =Ws ids—a1 iqs—paal#rdidr+cvq. ,
. . (2.4)
r=-gaddrtasias,

61' =(-Dewr tKr¢ariqa-TL)/J
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and the d-q coordinate frame coincides with the
coordinate ?rame rotating synchronously with the
rotor_flux vector. Take the input u and the out-
put y by

ds - iqs/C ] [l 0]_
u= = + u,
[:qa] (ias+asgar)/c 0 1l/dar (2.5)

V={tar wrlT

Then, the input-output dynamic behavior of the
gystem (2.4) with (2.5) is the same as that of the
following decoupled linear system:

£ —— —-— e — e
n=hzn+bhn, Y1 = az,

;2=1222+.52‘.1-2"'ETL, V2 = CzZ2,
where the detailed structures of Xi, B, ©, i =1,
2, and E are given in Appendix A. This can be
easily seen by noting that the state-space coor-
dinate change:
z=[zT 'z'é’]7=[i'1'1 Ziz Z21 ZZ2)T (2.7)
ids  ¢dr darigs @r]7

(2.6)

takes the nonlinear system consisting of 22.4§
and (2.5) to the decoupled linear system (2.6
and by recalling that the input-output dynamic
characteristics are invariant with reaspect to the
state transformation.

The block diagram representation of the sys-
tem (2.6) is shown in the dashed block of
Fig.2.1. Since the system (2.6) is linear and de-
coupled, the rotor speed {or the generated
Lorque{ and the rotor flux can be independently
controlled, Furthermore, well~-developed _linear
control theories can be directly applied to
achieve high dynamic performance. Thus this
approach (which is well-known as feqdbac‘t lin-
earization with input-outpui decoupling [14,23]
facilitates the controller design of induction mo-
tors which have highly nonlinear dynamics. In
fact, it can be shown that the system (2.4) sat-
isfies the ‘conditions for feedback linearization
with input-output decoupling in the paper by
Tarn et al. [235). Therefore, the feedback control
law (2.5) and the sgtate transformation (2.7) for
feedback linearization with input-output decou-
pling could be obtained by solving the set of
artial differential equations given in the above
iterature, However, (2.5) and (2.7) can be much
more easily found by physical ingight. L

Unfortunately, this approach faces some diffi-
culties in its practical implementation. First, the
contiroller consisting of (2.3) and (2.5) needs flux
sensors. However, it is impractical because there
exists reluctance to install flux-sensing coils or
Hall effect transducers in the stator of the in-
duction motor. Second, the rotor resistance Rr
varies largely with the machine temperature.
Since the ai are linear functions of Rr, values of
those parameters deviate largely from their
nominal values as the machine temperature rises.

To overcome these difficulties, we modify the
contiroller in (2.3), (2.5} as follows:

[\'u.] ~s iqs /o4l ]
u= = )
Vas (id5+&a$dr)/C+Tu/&r

“s=m'+asiqs/$dr

(2.8)

where 34: is the estimated value of ¢ar obtained
from the well-known simulator for ¢ar [3,9]:

édr:"aa@r*'gsids. (2.9)
The parameters 34, 45 which a pear in (2.8},
{2.9) repreasent the egtimated values of a4, as,
respectively. These parameters are asuccessively
updated by the identification algorithm for the
rotor resistance, which will be presented in
Section 3. Finally, the new inputs Ui, O0: in (2.8)
are chosen as

t
0 =Kpa (Th—ias ) +Kia | (T —ias )dt,

- o (2.10)
u2=qu(ﬁ'z"@!riqs)*’Kqu‘(a’z—@lriqs)dt,
where . °
O =Kos Bar+ K J(mr*—&r)dt,
o {(2.11)
Mo =—Kpuwr +Ki g | (ar *—or )dt.
0

Here, ¢ar*, wr* represent the reference com-
mands for ¢ar, &r, respectively. The constants
Kig, Kpp, Kia, Kpa, Kiw, Kpw, Kiq, and Kpq are
controller gains, The roles of the PI controllers
in (2.10) and IP controllers in (2.11) will soon be
discussed.

In the following Theorem 2.1, we will show
that under reasonable assumptions, the input-
outﬁut dynamic responses of the induction motor
wit the controller consisting of (2.8)-(2.11)
asymptotically follow those of the following de-
coupled linear system (2.6)' with some error
bounds.

ZacAaiZithigar*, Vizaizi,

e _ (2.6)°
zz2=ApZ2+bawr *+ETL , Va=c2EBZ,
where the detailed structures of Ai, by, ci, i = 1,
2, and E are given in Appendix A. As can be
seen from the block diagram representation of
(2.6)’ in Fig.2.1, the PI controllers in (2.10) are
used to obtain fast speed and flux responses by
controlling directly the torque and the d-axis
stator current. Aliernatively, high gain or hys-
teresis current controllers (6] may be used for
the same purpose. On the other hand, the IP
controllers in (2.11) are to assure the successful
set-point tracking of commanded reference goints
¢ar*, w*. The IP contlroller provides etter
transient responses than the usual PI controller

Before preseniing Theorem 2.1, wg need some
preliminary devslopments. Let x=[xx---x* {"
where x1%lds, x2S gar, xa‘f‘[(iﬁdr‘:&r)dt, ;2 -
Kp ¢dr+K1.. ~ ias)dt, Xsiiqs‘, X6 =8r, e)('Ie -
»rsdt, Xa:T(—Kpnﬂr*KiuX?"Pdrlqs)dt, xe=tqr, and

x102%%ur, Let u*2[d¢ar* @r*]T and y2[dar wr]T. Let
ZIR:=Rr—'ﬁr, where ’E is the estimated Jalue of Rr.
Then, the closed-loop system consisting of (2.1),
(2.2), and (2.8)-(2.11) can be written in the form:

*=F(x)+G(x)dRe /Rr +Lut 48T,  yeHx, (2.12)

where the detailed structures of F, G, E, H, and
L are given in AAppendix A. Define the new state
vector as w 2 [z:T g2T eT}T = [z)3---z14
zzi1++-2zza €1 ez]}T. Through the state Lransfor-
mation!

ng(x)=[X1 Xz H3 Xe (XzXs) Xs
» X7 %8 Xs (¥2-x10)]7, (2.13)

the system (2.12) is then transformed into
21 A1 21 +f1 (w)etb dar*+g1 (W) ARr /Rr
=22 |=| A2 22 +12 (W) e+bo@r® +g2 (w) ARe /Re BT |,
e | Lfs(wyetga (w)dRe /Re

yiz=cizi, i=1,2, (2.14)
where the detailed structures of A, bi, ci, i =1,
2, fi, gi, i=1, 2, 3, and E are given in Appendix
A. The input-output dynamic characteristics of
(2.14) are the same as those of (2.12) since only
the state tranaformation (2.13). is involved be-
tween iwo systems (2.12) and (2.14). However,
the system (2.14) has a simpler astructure than
the system (2.12). Therefore, the performance of
our controller (2.8)-(2.11) can be studied more
easily by using the system (2.14) instead of the
original system (2.12). Note that, when e = 0 (i.e.
no estimation error of the rotor flux) and 4Rr =

(i.e. no estimation error of the rotor resis-
tance), the system (2.14) turns to the decoupled
linear system (2.6)'. -

For technical simplicity, we assume that
(A.1) For each ui*:[0,w)*>qu, i =1, 2, Tu:[0,

@)*ar and x(0) '€ ox, the system {2.12)
has a unique solution x: y@)" (o .

That is, we assume that the system (2.12) has a
well-defined solution and is BIBS (Bounded Input
- Bounded State) 80 that x2(=par)$0 or
x10(=¢dr )%0. See Remark 2.1 for further com-
ments on’ (A.1), Simple calculations show that all
eigenvalues of A1 and Az have negative real
parts if the controller gains are chosen to asat-
isfy the Routh-Hurwitz criterion:

nai (minzi-nsi)-|mi|2neid0, i=1,2, (2.15)

where
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m=a +as+cKpo+D/J,

nzx=[(ax +ae )D+cKoq (KTK"H’%; J+cKiq
na1={cKrKiwKpo+cKiq (KrKew+D)]/J,
nar1=cKrKinKig/J, (2.186)
mz=a +as +cKpd,

nzz=casKpaKpp +casKpat+cKiatay as—az a4,
naz=casKieKpa+cKia (aaKpe+as ),

ne2=caeKieKia,

Therefore, we can assume that
{A.2) A: and A: are stable matrices.

Finally, we assume that
(A.3) There exists a constant ar > 0 such that

|4Rs /R [< or . (2.17)

Let 2=[&:i1T &T]T where &1%zu-%H, i = 1, 2.
From (2.6)’ and (2.14),

Bz Ei+H (w)e+g) (w)ARr /Re,
Be=Ae & +f2 (w)e+gz (W) AR /Rr
e=fa(w)e+ga (w)4Re /Rr.
Since T, fi, g, i = 1, 2, 3 are coniinuous and Ox
is a compact subset 01 R!9, there exist positive
constants ai, and gi such that

If3 (W)lsaga.

- -
n-yi=ae,

—Ve=cze2
yay2 {2.18)

i=1,2 .
lgs (w)ls g3, J§=1,2,3. (2.19)

Let QieR4, i = 1, 2 be gitive definite
aymmetric matrices. By (A.2), there exist
positive definite matrices PiER™, {1 = 1,
satiafying

AtTPi+P1 A= —Qi. (2.20)
Let

=, , ki= 23 (P .
é;‘fi"zi{“%.( ?"f&: §?‘5?/ {2 713}».(&».(0‘),
1= 04 —A30xr /84 1 N
A (P )— . 2.21
das=OmlPr §5i2;?7 DA (g)i%:f‘l B, 8220

Now, we are ready to state Theorem 2.1.

s se that (A.1)-(A.3) are satis-
fied. 'l‘h"é"r'ii‘l“the ug&%mller (2.8)-(2.11) guarantees

that, for all t20,
le(t) IS 6+(|e(0) |-6)e-2t, (2.22)
t t)|< day+daie-gt-
By (Bs & e 11,2, (2.29)
In addition, if u* and T. are constant,
t)ui¥l< dii+daie a4t -
bye (3w E?duidzil-gsi e+, i=1,2. (2.24)
oozt *,  farszgart. (2.25)

Theorem 2.1 states that the output responses

of the induction motor with the controller (2.8)-
(2.11) asymptotically follow those of the decou-
led linear system (2.6)’ with bounded errors.

he estimation error of the rotor flux is also

eventually confined to a certain bound. Since &
and du are proportional to ar, small estimation
error of the rotor resistance is desirable for
small "ultimate” bounds of lpL and |y - y'll. An
efficient identification algorithm for Re will be
resented in Section 3. The convergence rate of

Zel can be made faster by adopting the new
ux observers [16,17] instead of the flux simu-

lator (2.9 . However, the convergence rate of the
flux simulator (2.9) is fast enough for our pur-
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Fig.2.1. The block diagram representation of the
decoupled linear sysiem (2.6).

pose. The flux asimulator and flux observers
equally work well except for the first short pe-
riod of sistem operation.

Remark 2.1 By (A.1), we rior]g agsumed that
the €losed-160p system (2.12? is BIBS. By (A.2),
the decoupled linear system (2.6)' is also BIBS.
Under these assumptions, Theorem 2.1 describes
how the deviation of output responses .of the
closed-loop system (2.12) from the desired one
(i.e. output responses of the decoupled linear
system (2.6)’) depends on the estimation error of
the rotor resistance. The assumption (A.l1) was
made only for technical simplicity. It can be re-
moved by imposing restrictions on the allowable
sizes of qi, 03, Qr, and |x(0)2'. However, the
statement and proof of Theorem 2.1 get consider-
ably complicated.

Next, we show how the controller (2.8)-(2.11)
can be used to control induction motors with
high power efficiency as well as hi%h dynamic
performance. Recently, Kusko and aller [20]
Park and Sul [21], and Murata et al. [22] foun
that, in the steady state, (i) there is an optimal
slip angular speed @e1* for maximal power effi-
ciency and (ii) #s1* is a function of ®: (that is,
w1 *=f(wr)). The function f(wr) is usually ob-
tained experimentally rather than analytically.
The above results suggest that, to achieve maxi-
mal power efficiency in the steady state, the slip
angular speed should be adjusted according to
the relationship &s1*=f(#r). To do so, we gener-
ate the rotor flux command ¢ur* in the fo owing
manner.

185 (Ki wx7% —Kpwer* ) /£ (a0 * ) | 1/2

. if the system reaches the steady st.at.es
dar*= '
the rated value of éar, otherwise.
Note that x7=zz:=hf (wr*-or)dt is accessihle and
recall that, if tRe system (2.12) reacheas the
steady state, wrs=ar*. We have chosen #ir* as a
piecewise constant function. However, such a
step change in ¢a* will not significantly affect
the rotor speed response since the dynamic
characteristics of the induction motor with the
controller 52.8)—(2.11) closely follow those of the
decoupled linear system (2.6)’, as i8 shown in
Theorem 2.1.

If dar* is chosen as (2.26), the alilp angular
speed can be kept around . the optimal aslip an-
gular speed in the steady state.

1/ 151 /051 % <[ (1 +Kin )di2 /i 1 %+
|1/ U Nt e (2.27)

From (2.27), we can see that if there is no eati-
mation error of the rotor resistance, diz and &
are reduced to zero.and hence si% = #h1* is
achieved. :

3. Identification rithm for
*—"Ihe rotor resietance —

In this section, we present an identification
method for the rotor resistance. Other rame-
ters of the induction motor are assumed to be
ingensitive to the machine temperature and to be
priorly known. We alsoc assume that the machine
temperature varies slowly. All these assumptions
are reasonable.

Suppose that the closed—loo? system (2.12) is
in the steady state. Then, the following relation-
ships hold.

:l:=gsigs;:¢gr‘,‘l;n‘=p0r‘1ﬁ:l;ﬁrids'=!d¢:‘{7.
=gar*+ =15 /a4 =4Rr aatiy )
TiTbarTrhr Cae 25 imns 1259 %)

and

Me=Reias®MsSdqr®/Lr, U2®=¢ar®*[Reiqa®
R L e e (e paru B i9e 5.2

Now, define functions P and P* by

P=—aseh® (dar®ids®+oarsias®)/Rr,
pe e S L artdas®)/ (3.3)

Then, using (3.1) and (3.3), we can express ZP
as:

AP=P-P*=—4Rr 6 ® |8s 15 gar * |2 (84 +83)
QT S MRyt ie TS

This equation indicates that AP can be used as a
correcting function for the adaptation of Rr [19].
In the case of no uncertainty in Rr, 4P will be
zero. Otherwise, AP will exist. However, (3.4) re-
lates 4P to 4ARr Implicitly. An explicit relationship
between 4Rr and 4P can be obtained by refining

_50_
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th} above result further. Insert the identity:
as=Aet (RidRe/Rr)  into (3.4). Then, some manipula-
tions of the resulting equation yield the follow-
ing equation for 4Rr.

(4Rr /Lr )2+284 (4Rr /Lr )-Ko=0,
where

Kos-KiKe/(1+K1 ), m=ap|’ﬁ}£
Ko=)

(3.5)

/Lc@sS |@a 15 ¢ar* |2
|24+ jwe12 2. (3.6)

Solving (3.5), we finally get the explicit relation-
ship between 4Rr and 4P:

ARr :—ﬁr‘k% ‘

(3.7)

On the other hand, using (3.2) and (3.3), we ob-
tain an alternative expression of 4P:

AP=U1Piqs®—02% /Mtlats1® [ias5 |2, (3.8)

This equation can be used to compute 4P since
all variables that appear in (3.8) are accessible
or known.

Using the above results, we can construct the
identification algorithm for Rr. First, check if the
closed-loop system (2.12) is in the steady state.
If mo, the steady-state values of T, 03, Ws1
and id4s are all known. From these dala and
{3.8), Ko in (3.6) can be calculated. In the pres-
ence of measurement noises, we would rather
take the average value of Ko over sevgral sam-
pling periods, Nexi, the new value of is de—
termined by (3.7), the lculated value of Ko, and
gle resent value of . Finally, the constants

' thdat are needed for the execution of the
controller (2.8)-(2.11) are updated by using this
new value of .

4, Simulation and experimental results

Performances of the control scheme developed
in the preceding sections were investigated by
simulations and experiments. A 4 pole squirrel-
cage induction motor was chosen for experimental
work., The mgtor data are listed in Table 4.1. The
controller gaing used in the simulations and ex~
periments are

Ep¢=81.8, Kias=806.0,

Kpa=5.0, Kia= 5.0,
Kpu= Kiw= 6.3,

Kpq= 5.6, Kiq= 5.0.

The block diagram of the speed drive system
implemented for experimental work is shown in
Fig.4.1. Our control scheme was implemented on
the Motorola 68000 microprocessor and was exe-
cuted every 0.5 ms. Signals between the micro-~
proceasor and the induction motor are processed
through 12 bit A/D converters, 12 bit D/A con~
verters, and 6821 peripheral interface adapters.
The rotor speed and position are detected by
6840 counter/timers and an optical encoder
whose resolution is 4000 pulses/rev. For load
teat, a DC generator was coupled with the in-
duction motor. Its rated power and speed are 2.2
kW and 1750 rpm, respectively.

In practice, the oplimal sl speed function
f(®*) 18 obtained experimentally. Here, we at~
tempt not to find f£(®w:*) but to show the feasi-
bility of our control scheme for high power effi-
ciency. Accordingly, we assumed without loss of

enerality that wa* = 6.7, 34, 88 rpm for W*
00, 750, 1600 rpm, respéctively. In both simula-
tions and experiments, Rr was initially assumed
to be 0.42 o corresponding to a 50 % estimation
error in Rr. At the initial time, the induction mo~
-tor was being driven with no load at 100 rpm.

In this situation, @ was switched from 100
rpm to 750 rpm. To provide maximal power effi-
clency in the steady siate, ¢a* was adjusted
according to (2.35). The simulation and experi-
mental results for this case are shown in
Fig.4.2{(a) and (b), respectively. The experimental
results in Fig.4.2(b) are in good match with the
simulation results in Fig.4.2(af. From Fig.4.2, we
see that, in the presence of large estimation er-
ror in Ry, the actual responses of the rotor
speed and rotor flux deviate much from the de-
sired ones. Observe that the rotor speed re-
sponse is affected by the change in ¢4c and
that the alig speed in the steady state is differ-
ent from the optimal slip speed. Thus, neither
high dynamic performance nor maximal power ef-

+ O

ficiency can not be successfully achieved without
good estimation of the rotor resistance.

After the system reached its steady state, the
identification algorithm for Rr described in Sec-
tion 3 was executed. Then, W was awitched
from 750 rpm to 1600 rpm. The simulation results
are shown in Fig.4.3(a). Since no measurement
errors were assumed in the simulation, the iden-
tification algorithm produced the exact value of
Rr.  Accordingly, the simulation results in
Fig.4.3(a) correspond to the case of no estimation
error in Re. Recall that, in the case of 4R: y
the system eventually possesses the input-output
dynamic characteristice of the decoupled linear
system (2.6)'. We gsee that the step change in
$ar* made for power efficiency does not disturb
the rotor speed response at all. In the ex~
periment, the identification algorithm for Rr es-
timated the value of the rotor resistance as 0.89
q, which deviates 5.6 % from its nominal value
given in Table 4.1, However, the experimental re-
sults shown in Fig.4.3(b} confirm that our con-
trol scheme is useful in controlling induction
motors with maximal power efficiency as well as
high dynamic performance.

Finally, we applied the rated load torque 12
Nm for 1 second at the rated rotor speed and
flux. The simulation and experimental resulis in
Fig.4.4 show that while the rotor speed response
promptly recoverg its commanded value, the
rotor flux response is not affected by the load
torque.

As can be meen from Fig.4.2-Fig.4.4, the ex~
perimental results agree well with the simulation
results. However, there exist slight differences
between the simulation and experimental results,
which may result from two main reasons. First,
the control algorithm was performed through lé
bit word operations in the microprocessor, ‘ 8o
there exist gquantization errors, roundoff errors,
and truncation errors. Second, our identification
alﬁorithm for the rotor resistance depends on
other parameters of the induction motor as well
as measurement noises.

Through mathematical performance analyses,
simulations, and experiments, we have shown that
the recentiy developed nonlinear feedback con-
trol theories are practically useful in controlling
the induction motor with high dynamic perfor-
mance and maximal wer efficiency. Most of the
exmt.inf‘ nonlinear feedback control theories in
eneral require all state feedback wvariables to

e accessible and all system parameters to be
known with reasonable accuracy. In this paper,
these limitations were overcome by using a rotor
flux simulator and a parameter adaptation algo-
rithm. Our control scheme can be easily modified
for decoupling control of the motor torque and
the rotor flux.

Vas (Vgs d-axis (q-axis) stator voltage

ias (iqs d-axis (q-axis) stator current

dar ($ar d-axis (gq-axis) rotor flux

(X rotor angular speed

el slip angular speed

g1 * optimal slip angular speed for
maximum power efficiency

ngﬂ.rg stator srotor; resistance

“La (Lr stator (rotor) self-inductance

M stator/rotor mutual inductance

4 number of pole pairs

o i/—LSM?- /LsLr : leakage coefficient

c o

@ (4) cm,war/g@(c(n.mﬁ,/u))

8z (& CMR:r /Le2 ( JLc2)

a3 =3 oM/ Lr

&2&3 Re/Lr (8 fLr)

as (85 MBr /Lr ( /Lr

J rotor inertia of the MG set

D damping coefficient of the MG set

Kt SQM}éLr : torque constiant

Tw disturbance torque

X Euclidean norm of xeR™
A induced norm of a matrix A

Xi, R,y i~-th components of the vectors x,u,y

Zij j-th component of the vector zi

zi® steady siate value of the vector z

M, compact subsets of R

compact subset of R1© guch that
{xEcR1%:x2=0 or x0=0}=¢
a (Q) (e (Q)) minimum(maximum) eigenvalue of a
symmetric matrix Q@
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Table 4.1. Data of the induction motor used for Vi malepr) iia) 1odA} bus BB
experiment. 1500 120 hud s
336
220v/380 ¢, 60 Hz, Delta—Connected Stator 30
R 0.687 o Br 0.842 0 150 7 807 u o
L 83.97 ail Le 85.28 mil /L L2e
" 81.36 ad K 0.03 Kew? b )
] 0.01 Kgn?/s{ ¢ar(rated) 0.48 W ol o N "
ias (rated) 5.9 2 ias (rated) 11 4 - : 144
rated power 2.2 k¥ rated speed 1730 rpam _____[\————\’__n -
«1500-4 ~40
or, Bar o
[0.48
@ . ~80 L.
- r- n [xio] . o “'- Algorithalot 29mt -zuo# T T T —_— T -+ T T “to
Kew :’r “':" coord, o 0.2 sec/div
Atgorithe | " iy |reane. Fig.4.3.(a) Simulation results for the case
LHE2F Coomey ’:' g L3 ot “:‘ ] @n of the parameter adaptation.
(2.38) J l
. Tdent i fi- Sine, we(386rpm/div)
cation - HMCosine
-E—~ Algorittm| .
for @& | . {2 Tablo
T ' 750rpm-
><'1 ,’" [y OA~ i..(ZZA/div)
€ Rotor Flux I 144 [Coord.
R lslml-lor (z.s)[ Teans. A~ jas(4.5A/div)
0.244Wb~ $4c(0.3Wb/div)
Fig.4.1. Block diagr_am of the implemented speed
rive system. 0.2 sec/div
witrpml : .
ren Guirpa) Fig.4.3.(b) Experimental results for the case
- N [i%® of the parameter adaptation.
e {rpm]
——-- 16 estimation ecror in Re i .‘ou.‘” LaelAIGad )
—— 50% estLimation error in R 300 2100 |24
258
> 250 e
1750 - NG S — ]
. 20 Lis Fae
I 200
1400 ’ bd
Liso F1.92
0.4 12
L 100 1080 S
-0 [
0w L em===z 700 4 & [-0.96
=1 o -20
; T e
- GaelAl LalA) : —— 50 estimation srror in R ("0} eulWB] e [o-48
0 ——— 502 emtimation ecror in Re Fuszl,, o ) N
N . L T T T T - T ]

12 . /\\ . : . 0.2 sec/div
" - L4
Lisz

Fig.4.4.{a) Simulation results for

Y N e fosel L a rectangular load torque.

}-0.96

048
W (200rpm/div)

124 . . | o.48

-ﬂnw
o — Fo
' iv in{10A/div)
9.2 eec/div
Fig.4.2.(a) Simulation results for the case . ,
8 of a 50 X estimation error in Rr. ias(6A/div)
$0:(0.48Wb/div)

We{360rpm/div)
0.2 sec/div
Fig.4.4.(b) Experimental results for

a rectangular load torque.

iee(22A/div)
APPENDIX A

iaa({4.5A/div)
$2:(0.3Wb/div) (1) & By @ i = 1,2 and E in (2.6);

0.2 sec/div - ~a1 82| - “(axtae)} O c 0 -
. . 'A1=[ l.i-a= T , B= , o= [0
. Fig.4.2.(b) Experimental results for the case as K/J Y21 0 ~1/3
of a 50 X estimation error in R:.
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(2) F, G, ®, H, and L in (2.12):

—(a2+cKpd )xa +az X2 +cKpd Ki ¢ Xs +CK1 aXa —CEpaKp¢ X2 0 +pa3Xo X8

asx1-84Xz2+asX3Xe/Xia

—x%10

~Kpqxio+Kigxa-xa

asx1 x5 +CEpq Kpuxa ~cKpq Kiwxr—cHiq Xs

~(m1+CKpq )xs+a2X0-paaxs (x2—X10)~
P(x) = X0

~Dxs /T + Kr(x2xs=xaxe)/J
~xs
~Kowxs +KiwX7-X10X5

as X5 -84 X9 -aS X2 XS /X0

[ 85X1 -84 X10
g ] 1 r0 0 ro 1 o 01
-asXsxe/X10 00 0 10
[\ 18 0 Q0
] o0 4 00
asxrus /X0 90 2 0 (U]
= H , = B HT =
669 ) S P -1/3 01
0 01 o ¢ 0
0 00 0 0 0
asxzXs /X0 00 L 0 0 0
L saxio-asxa LO 0 J [ L0 04
(3) Ay, bty ey i = 1, 2, fl, iy 2, 3,
’ 2 a5 56 Bnd’ 2.10)
© —(m+cKpd) a2—cKpako4 cHpaKie cKig 0
as ~84 0 0 b 0
- ; L =
h 0 -1 0 o |’ 1|
. -1 —Kp4 Kio 0 0
[ -(aa+aa+ckpa) —CEoolpw CHpalliw cHig [} 0
-] 0 -1/3
e = Ke/7 D/ Q VB = et =
0 -1 ¢ 0
L -1 ~Hpw Eiw ¢ 0 0 ]
Pozaa : Hoalos H —asz21
' - ==
Bihadsu U 0 o : 212(z12-e2)
- 1 - e b - e
fi(w) = | nna(zaz—e2) | ,» fa(w) e :.
0 S | —_— )
) 1z (z12-€2) | d
0 H - X3
I© asz2a? t c(EpaKiwzzo-KowRpa z22+K1a224)/ (212—¢2)
—— 4 @2212 |
122 (z12~e2) 1 - mszi12z21/212(212~e2) — paszizz22
]
]
fz(w) = —Kroi2 /T : 0
0 1 0
1
L 0 j 221 /212
r 1} ~asz21%ey . asz11z2)
-aszz1€1 2122 (z12-e2) z2-e2
(W) = | az(zrz—e:) |, g2(v) = 4 »
0 0
L 0 0
aszz21/(z12-e2) ]
(W) = —sszz1e1/z12(z12—€2) ~- sa(z12-e2) + aszn
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