• Title/Summary/Keyword: Rotor Shaft

Search Result 360, Processing Time 0.028 seconds

A Generalized Modal Analysis for Multi-Stepped, Distributed-Parameter Rotor-Bearing Systems (다단 연속 회전체 베어링 계의 일반화된 모드 해석)

  • 박종혁;홍성욱
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.525-534
    • /
    • 1999
  • The present paper proposes a generalized modal analysis procedure for non-uniform, distributed-parameter rotor-bearing systems. An exact element matrix is derived for a Timoshenko shaft model which contains rotary inertia, shear deformation, gyroscopic effect and internal damping. Complex coordinates system is adopted for the convenience in formulation. A generalized orthogonality condition is provided to make the modal decomposition possible. The generalized modal analysis by using a modal decomposition delivers exact and closed form solutions both for frequency and time responses. Two numerical examples are presented for illustrating the proposed method. The numerical study proves that the proposed method is very efficient and useful for the analysis of distributed-parameter rotor-bearing systems.

  • PDF

Energy Harvester on a Ship Propulsion Shaft for Wireless Sensor System Applications (무선센서 시스템 응용을 위한 선박 추진 축계용 에너지 하베스터)

  • Van Ai Hoang;Young Chul Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.96-101
    • /
    • 2023
  • In this work, an energy harvester (EH) on the rotating shaft has been proposed for a wireless sensor system (WSS) applications. The EH was designed and implemented to the shaft with a diameter of 20 cm to continuously power a wireless sensor system (WSS). The rotor has coils wound in pairs on seven U-shaped cores attached to the shaft. The stator consists of eight pairs of magnets attached to eight I-cores and they are fixed to an outer fixture. The generated power of the EH was investigated as function of the air gap between the rotor and stator, the number of turn of coils, and shaft speed. The fabricated EH produced power up to 2.87 W at 300 rpm and the 3 mm air gap.

Trim Range and Characteristics of Autorotation(I): Rotor Speed Limit and Pitch Range (자동회전의 트림 범위와 특성(I): 로터 스피드 한계와 피치범위)

  • Kim, Hak-Yoon;Choi, Seong-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.487-497
    • /
    • 2011
  • Numerical analysis has been performed to investigate the rotor speed and pitch range variations when the airspeed is increased in autorotation. Transient Simulation Method(TSM) was used to obtain the steady states of autorotation. The rotor blade was analyzed by the two-dimensional compressible Navier-Stokes solver in order to adapt to the airspeed increase and the results were used in the transient simulation method. Meanwhile, the Pitt/Peters inflow theory was used to supply the induced velocity fields. For the prescribed torque equilibrium state, the combinations of velocity, shaft angle, and pitch angle were produced to investigate the rotor speeds and variable ranges. The rotor tip Mach number and rotor speed were correlated and the trim range of pitch angle was observed with respect to the shaft angle decrease.

Rotordynamic Analysis of Automotive Turbochargers Supported on Ball Bearings and Squeeze Film Dampers in Series: Effect of Squeeze Film Damper Design Parameters and Rotor Imbalances (볼 베어링과 스퀴즈 필름 댐퍼로 지지되는 차량용 터보차저의 회전체동역학 해석: 스퀴즈 필름 댐퍼 설계 인자와 회전체 불균형 질량의 영향)

  • Kim, Kyuman;Ryu, Keun
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Modern high-performance automotive turbochargers (TCs) implement ceramic hybrid angular contact ball bearings in series with squeeze film dampers (SFDs) to enhance transient responses, thereby reducing the overall emission levels. The current study predicts the rotordynamic responses of the commercial automotive TCs (compressor wheel diameter = ~53 mm, turbine wheel diameter = ~43 mm, and shaft diameter at the bearing locations = ~7 mm) supported on ball bearings and SFDs for various design parameters of SFDs, including radial clearance, axial length, lubricant viscosity, and rotor imbalance conditions (i.e., amplitudes and phase angles) while increasing rotor speed up to 150 krpm. This study validates the predictive rotor finite element model against measurements of mass, polar and transverse moments of inertia, and free-free mode natural frequencies and mode shapes. A nonlinear rotordynamic model integrates nonlinear force coefficients of SFDs to calculate the transient responses of the TC rotor-bearing system. The predicted results show that SFD radial clearances, as well as phase angles of rotor imbalances, have the paramount effect on the dynamic responses of TC shaft motions.

A Study of Bearing Oil Whip Treatment in 300MW Steam Turbine with Oil Temperature Change (300MW급 증기터빈의 베어링 윤활유 온도조정에 의한 오일휩 제거방법에 관한 연구)

  • Hwang, Dal-Y.;Kim, Hwa-Y.;Moon, Seung-J.;Lee, Jae-H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.244-247
    • /
    • 2008
  • The phenomena of oil whip in steam turbine takes place for the un-balancing force between rotor shaft and bearing oil film. The several parameters that affect onset of oil whip have been well known. However, the major parameter of oil whip is shaft mis-alinement. A oil whip causes the high vibration and the shutdown of rotor system. We mostly stop the steam turbine to adjust a shaft re-alinement concerning oil whip. In this case, It needs many costs for maintenance and long shutdown times. In this study, we study and observe the oil whip of the 300MW steam turbine in many years and we conduct the field test for another steam turbine for reducing vibration from oil whip. The results of this study are that a oil whip takes place with a particular rotating speed or a particular turbine output and the oil temperature change is a very effective method for on-line oil whip treatment.

  • PDF

Rotordynamic Analysis and Operation Test of Turbo Expander with Hydrostatic Bearing (정압베어링을 적용한 터보팽창기의 회전체 동역학 해석 및 구동시험)

  • Lee, Donghyun;Kim, Byungock;Jung, Junha;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.33-40
    • /
    • 2022
  • In this study, we present rotor dynamic analysis and operation test of a turbo expander for a hydrogen liquefaction plant. The turbo expander consists of a turbine and compressor wheel connected to a shaft supported by two hydrostatic radial and thrust bearings. In rotor dynamic analysis, the shaft is modeled as a rigid body, and the equations of motion for the shaft are solved using the unsteady Reynolds equation. Additionally, the operating test of the turbo expander has been performed in the test rig. Pressurized helium is supplied to the bearings at 8.5 bar. Furthermore, we monitor the shaft vibration and flow rate of the helium supplied to the bearings. The rotor dynamic analysis result shows that there are two critical speeds related with the rigid body mode under 40,000 rpm. At the first critical speed of 36,000 rpm, the vibration at the compressor side is maximum, whereas that of the turbine is maximum at the second critical speed of 40,000 rpm. The predicted maximum shaft vibration is 3 ㎛, whereas sub-synchronous vibration is not presented. The operation test results show that there are two critical speeds under the rated speed, and the measured vibration value agrees well with predicted value. The measured flow rate of the helium supplied to the bearing is 2.0 g/s, which also agrees well with the predicted data.

A Study on the Vibration Analysis of Impeller and Shaft in Cryogenic Submerged Pump (극저온용 액중펌프의 임펠러 및 샤프트 진동해석에 관한 연구)

  • Kweon, Byung Soo;Lee, Chi-Woo;Shin, Yoo In;Yi, Chung-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.56-62
    • /
    • 2017
  • In this research, reverse engineering was applied to the product manufactured by "Vanzetti" from Italy to develop a localized cryogenic submerged pump used in small-scale LNG liquefaction plants. The results of modal analysis of the impeller and shaft confirmed that the resonance frequency of the impeller and shaft played an important role in the rotor. Modal analysis of the rotor confirmed that the forcing frequency had no influence on the resonance phenomenon.