• Title/Summary/Keyword: Rotor Shaft

Search Result 360, Processing Time 0.037 seconds

Rotordynamic Characteristics of an APU Gas Turbine Rotor-Bearing System Having a Tie Shaft

  • Lee, An-Sung;Lee, Young-Seob
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.152-159
    • /
    • 2001
  • In this paper it is intended to set-up a sound model of the 60,000rpm 100kW prototype APU gas turbine rotor-bearing system, and particularly to investigate the influences of the tie shaft on the rotordynamic characteristics of the entire APU gas turbine rotor-bearing system, employing the dual shaft model. Firstly, a mock-up APU rotor has been constructed to test and verify the model. Analytical natural frequency results have agreed with the corresponding modal test ones to within 5% difference. Then, the rotordynamic characteristics of the prototype APU rotorbearing system have been investigated. Natural vibration and unbalance response analyses results have shown that the inner tie shaft resonance can cause high enough vibration of the outer main rotor shaft. This could be a concern as the rotor journals operate on very thin air film at high speed. It is concluded as a conservative design practice that the inner tie shaft should be explicitly modeled in the rotordynamic analysis of the APU rotor-bearing system.

  • PDF

A Study on the Vibration Characteristics of Critical Speed for Rotor Shaft (회전샤프트의 위험속도에 관한 진동특성 연구)

  • Son, Choong-Yul;Lee, Kang-Su;Ryu, Young-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.961-971
    • /
    • 2008
  • In the design of a rotor shaft, care should be taken to minimize vibration by taking into account the sources of vibration. In addition, the intensity critical speed, stability, and other related aspects of the system must be considered. especially when it is operated at a critical speed, it is important to address issues related to vibration, as an increase in the whirling response of the rotor shaft can cause damage to the shaft, destruction of the rotor parts, and detrimental abrasions on the bearings. In this thesis, the vibration characteristics of a rotor shaft are investigated through the use of the finite element method. Variations of the diameters and lengths were used to determine the effect of a rotor shaft using Beam No.188(3D linear strain beam) in ANSYS version 11.0 as a universal interpretation program for finite elements. Special care was taken to prevent excessive vibration, which can result from resonance at the initial stage, in the formulation of a dynamic design for a rotor shaft through calculations while changing the diameters and the lengths of the shaft. Moreover, the dynamic characteristics of the critical speed, total mass, D/L(diameter to length) ratio, and natural frequency were verified. Furthermore, the rotor shaft applied by bearing element was calculated and compared by using Combi No. 214(2-D spring-damper bearing).

Rotordynamic Influences of a Tie Shaft in a APU Gas Turbine Rotor-Bearng System (보조동력 개스터빈 로터-베어링 시스템에서 체결축의 로터다이나믹 영향)

  • Lee, An-Sung;Lee, Young-Seob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1051-1057
    • /
    • 2000
  • A projected 100 kW APU gas turbine rotor-bearing system has a main outer shaft, which is composed of some numbers of segmented sections for manufacturing and assembly conveniences. For a secure assembly of the segmented sections a tie shaft or inner shaft is installed inside of the outer shaft and a tensional axial preload of 50,000 N is provided to it. In this paper it is intended to set-up a sound modeling method of the APU rotor system, and particularly, the influences of the tie shaft on the rotordynamic characteristics of the entire APU gas turbine rotor-bearing system are investigated. Analysis results show that as a conservative design practice the inner tie shaft should be actively modeled in the rotordynamic analysis of the APU rotor-bearing system, and its effects on the dynamic behaviors of the outer shaft should be thoroughly design-reviewed.

  • PDF

Rotordynamics of a Centrifuge Rotor-Bearing System for 100,000 rpm Operation (100,000 rpm 운전용 원심분리기 로터-베어링 시스템의 회전체동역학 해석)

  • 이안성;김영철;박종권
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.450-456
    • /
    • 1998
  • A rotordynamic analysis is performed with a centrifuge rotor-bearing system for the raing speed of 100,000 rpm. The system is composed of a centrifuge rotor(or simply the rotor), flexible shaft, motor rotor and shaft, and two support rolling element bearings of the motor shaft. Design goals are to achieve wide separation margins of critical speeds and favorable unbalance responses of the rotor at the associated critical speeds. The latter requirements are especially important as the system crosses multiple numbers of critical speeds and as the system may not have enough separaton margins around the rating speed. As the system adopts an extra-flexible shaft, it is shown that the rotor has satisfactory small unbalance responses over higher criticals while having an unsatisfactory large one at the first critical. To supress this a bumper ring or guide bearing needs to be installed at a suitable location of the flexible shaft. It is also shown that even with the flexible shaft the dynamics of the motor must be incoporated into the full system model to accurately identify the fourth critical speed, which is close to the rating speed, and higher ones. The analysis is based on the finite element method.

  • PDF

Development of Large Rotor Shaft for Marine Turbo Charger Using Friction Welding with Dissimilar Materials (마찰용접을 이용한 대형선박 터보챠저용 이종 로타샤프트 개발)

  • Moon, Kwang-Ill;Jeon, Jong-Won;Jeong, Ho-Seung;Cho, Jong-Rae;Choi, Sung-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.257-264
    • /
    • 2016
  • Solid state joining techniques are increasingly applied in a wide range of industrial applications. Friction welding is a solid state welding technique that is used to join similar or dissimilar materials. In this study, friction welding was applied to rotor shaft composed of a disk and a shaft. The disk and shaft were manufactured by hot forging and rolling, respectively. The aim of the study was to predict the structural characteristics during hot forging and friction welding process for rotor shaft of turbo charger. The structural characteristics were determined by heat input and heat affected zone (HAZ) during a short cycle time. Thus, transient FE analysis for hot forging and friction welding was based on heat transfer. The results were used to predict structural characteristics during hot forging and friction welding processes. The prototype of rotor shaft was manufactured by the result-based process parameters.

Coupled Unbalance Response Analyses of a Geared Two-shaft Rotor-bearing System (기어 전동 2축 로터-베어링 시스템의 연성 불균형 응답해석)

  • 이안성;하진웅
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.598-604
    • /
    • 2003
  • In this paper a general solution method is presented to obtain the unbalance response orbit from the finite element based equations of motion of a gear-coupled two-shaft rotor-bearing system, whose shafts rotate at their different speeds from each other. Particularly, are proposed analytical solutions of the maximum and minimum radii of the orbit. The method has been applied to analyze the unbalance response of a 800 refrigeration-ton turbo-chiller rotor-bearing system having a bull-pinion speed increasing gear. Bumps in the unbalance response of the driven high speed compressor rotor system have been observed at the first torsional natural frequency due to the coupling effect of lateral and torsional dynamics. Further, the proposed analytical solutions have agreed well with those obtained by a full numerical approach. The proposed analytical solutions can be generally applied to obtain the maximum and minimum radii of the unbalance response orbits of dual-shaft rotor-bearing systems coupled by bearings as well.

Optimization of Magnetic Flux-path Design for Reduction of Shaft Voltage in IPM-Type BLDC Motor

  • Kim, Kyung-Tae;Hur, Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2187-2193
    • /
    • 2014
  • In this paper, we propose a method for suppressing shaft voltage by modifying the rotor shape and the permanent magnets in interior permanent magnet type high voltage motors. The shaft voltage, which adversely affects the bearing by occurring bearing current, is induced by parasitic components and the leakage flux in motor-driven systems as well as inherent linkage flux between main magnetic flux and shaft according to rotor configuration. Thus, shaft voltage should be analyzed and considered under inverter-driven and non-inverter-driven conditions because inherent linkage flux can analyze under non-inverter-driven condition. In this study, we designed re-arrangement magnet and re-structuring rotor to minimize the shaft voltage. In addition, we optimized the proposed models. The shaft voltage suppression effect of the designed model was validated experimentally and by comparative finite element analysis.

Vibration Analysis of the Shaft-duplicate Disk System (축-이중 원판계의 진동해석)

  • Chun, Sang-Bok;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.896-906
    • /
    • 1997
  • The effect of duplicate flexible disks on the vibrational modes of a flexible rotor system is investigated by using an anlytical method based on the assumed modes method. The rotor model to be analyzed consists of duplicate disks on a flexible shaft. In modeling the system, centrifugal stiffening and disk flexibility effects are taken into account. To demonstrate the effectiveness of the method, a hard disk drive spindle system commonly used in personal computers and a simple flexible rotor system with two disks are selected as examples. In particular, the dynamic coupling between the vibrational modes of the shaft and the duplicate disks is investigated with the shaft rotational speed varied.

Torsional Stress Prediction of Turbine Rotor Train Using Stress Model (스트레스 모델을 이용한 터빈 축계의 비틀림 응력 예측)

  • Lee, Hyuk-Soon;Yoo, Seong-Yeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.850-856
    • /
    • 2013
  • Torsional interaction between electrical network phenomena and turbine-generator shaft cause torsional stress on turbine-generator shaft and torsional fatigue fracture on vulnerable component, but the prediction of the torsional stress is difficult because the torsional stress is occurred instantly and randomly. Therefore continuous monitoring of the torsional stress on turbine-generator shaft is necessary to predict the torsional fatigue, but installing the sensors on the surface of the shaft directly to monitor the stress is impossible practically. In this study torsional vibration was measured using magnetic sensor at a point of turbine-generator rotor kit, the torsional stress of whole train of rotor kit was calculated using rotor kit's stress model and the calculated results were verified in comparison with the measured results using strain gauge at several point of turbine-generator rotor kit. It is expected that these experiment results will be used effectively to calculate the torsional stress of whole train of turbine-generator rotor in power plants.

Torsional stress prediction of turbine rotor train using stress model (스트레스 모델을 이용한 터빈 축계의 비틀림 응력 예측)

  • Lee, Hyuk-Soon;Yoo, Seong-Yeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.862-867
    • /
    • 2013
  • Torsional interaction between electrical network phenomena and turbine-generator shaft cause torsional stress on turbine-generator shaft and torsional fatigue fracture on vulnerable component, but the prediction of the torsional stress is difficult because the torsional stress is occurred instantly and randomly. Therefore continuous monitoring of the torsional stress on turbine-generator shaft is necessary to predict the torsional fatigue, but installing the sensors on the surface of the shaft directly to monitor the stress is impossible practically. In this study torsional vibration was measured using magnetic sensor at a point of turbine-generator rotor kit, the torsional stress of whole train of rotor kit was calculated using rotor kit's stress model and the calculated results were verified in comparison with the measured results using strain gauge at several point of turbine-generator rotor kit. It is expected that these experiment results will be used effectively to calculate the torsional stress of whole train of turbine-generator rotor in power plants.

  • PDF