Browse > Article
http://dx.doi.org/10.5370/JEET.2014.9.6.2187

Optimization of Magnetic Flux-path Design for Reduction of Shaft Voltage in IPM-Type BLDC Motor  

Kim, Kyung-Tae (Dept. of Electrical Engineering, Ulsan University)
Hur, Jin (Dept. of Electrical Engineering, Ulsan University)
Publication Information
Journal of Electrical Engineering and Technology / v.9, no.6, 2014 , pp. 2187-2193 More about this Journal
Abstract
In this paper, we propose a method for suppressing shaft voltage by modifying the rotor shape and the permanent magnets in interior permanent magnet type high voltage motors. The shaft voltage, which adversely affects the bearing by occurring bearing current, is induced by parasitic components and the leakage flux in motor-driven systems as well as inherent linkage flux between main magnetic flux and shaft according to rotor configuration. Thus, shaft voltage should be analyzed and considered under inverter-driven and non-inverter-driven conditions because inherent linkage flux can analyze under non-inverter-driven condition. In this study, we designed re-arrangement magnet and re-structuring rotor to minimize the shaft voltage. In addition, we optimized the proposed models. The shaft voltage suppression effect of the designed model was validated experimentally and by comparative finite element analysis.
Keywords
High voltage motor; IPM-type BLDC motor; Shaft voltage;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Muetze and A. Binder, "Calculation of influence of insulated bearings and insulated inner bearing seats on circulating bearing currents in machines of inverter-based drive systems," IEEE Trans. Ind. Appl., vol. 42, no. 4, pp. 965-972, 2006.   DOI   ScienceOn
2 I. S. Jung, H. G. Sung, Y. D. Chun, and J. H. Borm, "Magnetization modeling of a bonded magnet for performance calculation of inner-rotor type BLDC motor," IEEE Trans. on Mag., vol. 37, no. 4, pp. 2810-2813, July 2001.   DOI   ScienceOn
3 H. William Oh and A. Willwerth, "Shaft grounding - a solution to motor bearing currents," Refrigerating and Air-Conditioning Engineers, Inc. Published in ASHRAE Trans., vol. 114, no. 2, 2008.
4 T. Maetani, S. Morimoto, K. Iimori, Y. Isomura, and A. Watanabe, "Approaches to suppressing shaft voltage in brushless DC motor driven by PWM inverter," presented at 2011 Int. Conf. Elect. Mach. Syst. (ICEMS), pp. 1-6.
5 J. Adabi, F. Zare, G. Ledwich, A. Ghosh, and R. D. Lorenz, "Bearing damage analysis by calculation of capacitive coupling between inner and outer races of a ball bearing," presented at the Conf. Power Electron. and Motion Control, pp. 903-907, Sept. 2008.
6 J. Adabi, F. Zare, A. Ghosh, and R. D. Lorenz, "Calculations of capacitive couplings in induction generators to analyse shaft voltage," IET Power Electron., vol. 3, no. 3, pp. 379-390, 2010.   DOI   ScienceOn
7 A. Muetze, and A. Binder, "Techniques for measurement of parameters related to inverter-induced bearing currents," IEEE Trans. Ind. Appl., vol. 43, no. 5, pp. 1068-1074, 2007.
8 G. H. Kang, Y. D. Son, G. T. Kim, and J. Hur, "The novel cogging torque reduction method for interior type permanent magnet motor," IEEE Trans. Ind. Appl., vol. 45, pp. 161-167, Jan. 2009.   DOI   ScienceOn
9 A. Kioumarsi, M. Moallem, and B. Fahimi, "Mitigation of Torque Ripple in Interior Permanent Magnet Motors by Optimal Shape Design," IEEE Trans. Mag., vol. 42, no. 11, pp. 3706-3711, 2006.   DOI   ScienceOn
10 T. J. E Miller, Design of Brushless Permanent Magnet Motor, Clarendo press, Oxford, 1994.
11 G. H. Kang, J. Hur, B. W. Kim and B. K. Lee, "The shape design of interior type permanent magnet BLDC motor for minimization of mechanical vibration," IEEE Conf. Energy Convers., pp. 2409 - 2414, Sep. 2009.
12 Kyung-Tae Kim, Jin Hur, "Reduction of Shaft Voltage by the Flux-path Design in IPM-Type BLDC Motor" 2013 International Conference on Electrical Machines and Systems, pp. 803-806, Oct. 2013.