• 제목/요약/키워드: Rotor Dynamic Analysis

검색결과 426건 처리시간 0.025초

Rotor dynamic analysis of a tidal turbine considering fluid-structure interaction under shear flow and waves

  • Lass, Andre;Schilling, Matti;Kumar, Jitendra;Wurm, Frank-Hendrik
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.154-164
    • /
    • 2019
  • A rotor dynamic analysis is mandatory for stability and design optimization of submerged propellers and turbines. An accurate simulation requires a proper consideration of fluid-induced reaction forces. This paper presents a bi-directional coupling of a bond graph method solver and an unsteady vortex lattice method solver where the former is used to model the rotor dynamics of the power train and the latter is used to predict transient hydrodynamic forces. Due to solver coupling, determination of hydrodynamic coefficients is obsolete and added mass effects are considered automatically. Additionally, power grid and structural faults like grid fluctuations, eccentricity or failure could be investigated using the same model. In this research work a fast, time resolved dynamic simulation of the complete power train is conducted. As an example, the rotor dynamics of a tidal stream turbine is investigated under two inflow conditions: I - shear flow, II - shear flow + water waves.

Analysis, Modeling and Compensation of Dynamic Imbalance Error for a Magnetically Suspended Sensitive Gyroscope

  • Xin, Chaojun;Cai, Yuanwen;Ren, Yuan;Fan, Yahong;Xu, Guofeng;Lei, Xu
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.529-536
    • /
    • 2016
  • Magnetically suspended sensitive gyroscopes (MSSGs) provide an interesting alternative for achieving precious attitude angular measurement. To effectively reduce the measurement error caused by dynamic imbalance, this paper proposes a novel compensation method based on analysis and modeling of the error for a MSSG. Firstly, the angular velocity measurement principle of the MSSG is described. Then the analytical model of dynamic imbalance error has been established by solving the complex coefficient differential dynamic equations of the rotor. The generation mechanism and changing regularity of the dynamic imbalance error have been revealed. Next, a compensation method is designed to compensate the dynamic imbalance error and improve the measurement accuracy of the MSSG. The common issues caused by dynamic imbalance can be effectively resolved by the proposed method in gyroscopes with a levitating rotor. Comparative simulation results before and after compensation have verified the effectiveness and superiority of the proposed compensation method.

HDS를 통한 헬리콥터 로우터 블레이드 동적 특성 및 하중 분석기법 연구

  • 김덕관;주진
    • 항공우주기술
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2002
  • 본 논문은 HDS를 통해 헬리콥터 로우터 블레이드 동적 특성을 분석하는 기법 및 하중 분석 기법을 포함하고 있다. 헬리콥터의 진동 특성을 결정짓는 블레이드의 동적 특성을 분 석하기 위해 로우터 회전속도에 따른 고유 진동수 및 고유 모드를 구하였다. 헬리콥터 로 우터의 운용 회전속도(Ω)의 정수배(NΩ)와 회전하는 로우터 블레이드의 고유 진동수와 근 접성을 검토함으로써 헬리콥터에 전달되는 진동을 예측할 수 있게 된다. 또한 블레이드에 서 생기는 공력 하중을 정확히 예측함으로써 동체에 전달되는 진동하중을 구할 수 있게 된다. 로우터 블레이드 동역학적 설계시 필수적인 2가지 기법의 기본적인 내용을 기술함으 로써 헬리콥터 설계 과정을 수립하고자 하였다.

  • PDF

유한요소법에 의한 펌프축계의 안정성해석 (Stability analysis of pump using finite element method)

  • 양보석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.31-40
    • /
    • 1986
  • With the tendency toward high speed and high pressure in centrifugal pumps, the problem of sub-synchronous vibration has arisen, caused by the hydraulic forces of the working fluid, such as wearring, balance piston, impeller, etc.. These forces can drastically alter the rotor critical speeds and stability characteristics, and can be acted significant destabilizing forces. For preventing such self-excited vibration, the desing of the rotor system needs, which would secure the stability of the machine. In this paper, a procedure is presented for dynamic modeling of rotor-bearing-seal-impeller systems which consist of rigid disks, distributed parameter finite rotor elements and discrete bearings, seals and impellers. A finite element model including the effects of rotatory inertia and gyroscopic moments is developed using the consistent matrix approach. The technique of dynamic matrix reduction is applied to the shaft matrices to reduce them to a set of matrices of dynamic of significantly fewer degrees of freedom. The representation of bearing, seal and impeller elements is in term of linearized stiffness and damping matrices by reasonably small perturbations from equilibrium. The stability behavior of a typical double suction centrifugal pump is presented. Results show the influence of clearance and flow conditions on running speeds and stability characteristics.

  • PDF

열린 균열이 있는 일반 회전체계의 동적 모델링 및 해석 (Dynamic Modeling and Analysis of General Rotor Systems with Open Cracks)

  • 홍성욱;최성환;이종원
    • 한국소음진동공학회논문집
    • /
    • 제13권4호
    • /
    • pp.290-299
    • /
    • 2003
  • This paper presents an efficient modeling and dynamic analysis method for open cracked rotor bearing systems. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of cracks. The proposed modeling method is validated through a series of simulations and experiments. First, the proposed method Is rigorously compared with a commercial finite element code. Then, an experiment is performed to validate the proposed modeling method. Finally, a numerical example is introduced to demonstrate the possible application of the proposed method in the crack diagnosis for rotor systems.

오버행을 고려한 영구자석 동기 발전기의 동특성 해석 연구 (The Study on a Dynamic Analysis of Permanent Magnet Generator considering Overhang Effect)

  • 김기찬;이주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 광주전남지부
    • /
    • pp.58-62
    • /
    • 2006
  • The purpose of this paper is characteristic analysis of permanent magnet generator (PMG) for automatic voltage regulator (AVR)power of brush less synchronous generator. However, this PMG has a spoke type permanent magnet rotor with large overhang for high power density, characteristic analysis considering concentration effect of air-gap flux density due to the overhang should be performed. 30 transient finite element method (FEM)analysis is good solution for overhang parameter, but this method needs too much calculation time. In this paper, we examined the overhang effects based on overhang length and material of rotor core by using 20 and 30 static FEM analysis, and proposed 20 dynamic FEA model considering overhang parameter which gives good and rapid results. The proposed method is verified by the test results of no load, load and short circuit test.

  • PDF

회전축에 Thin-walled Cylinder가 결합된 회전체 시스템의 동적 해석 (Dynamic Analysis of a Rotor System Having Thin-walled Cylinder Combined with Its Shaft)

  • 최영휴;박선균;홍대선;정원지
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.631-636
    • /
    • 2000
  • In this paper a transfer method model was introduced in order to analyze critical speeds and vibration modes of a flexible rotor system, whose rotor shaft is cupped into and fitted with a thin-walled cylinder at its end. The computed analysis results were compared with those of the experimental modal test. Both results show good agreement each other. Furthermore the free-run(or run-down) test result for the real rotor system also shows that the proposed transfer matrix method modelling can be successfully applicable to analyzing accurate critical speeds(or natural frequencies) of the rotor system.

  • PDF

비상디젤발전기의 회전체 및 구조물 해석적 건전성 평가에 관한 연구 (A Study of Analytical Integrity Estimations for the Structure and Rotor System of an Emergency Diesel Generator)

  • 김재실;최헌오;정훈형
    • 한국소음진동공학회논문집
    • /
    • 제24권2호
    • /
    • pp.79-86
    • /
    • 2014
  • 이 논문에서는 비상디젤발전기의 구조물 및 내부 회전체에 대한 건전성 평가를 위한 해석적 방법을 제시한다. 비상발전기는 원자력발전소 안전과 관련된 매우 중요한 기기로써 지진과 같은 비상사태에 원전의 안전 정지를 위한 관련 기기에 비상 전원을 공급한다. 비상발전기의 회전기 부분 또한 지진과 같은 충격에도 안전성을 확보해야 한다. 비상발전기 본체에 대한 모달 해석을 하여 공진 주파수가 지진 주파수 영역에 있는지를 확인하여 응력 해석의 방법을 정했다. 회전체 부분의 안전성은 저널 베어링의 필름 두께와 임계 회전수를 계산하여 최소 유막 요구치와 운전속도와 비교하여 안전성을 판단하였다. 계산된 응력해석의 최대치는 허용치보다 작았으며, 저널 베어링의 유막과 회전수 또한 안전한 범위에 들었다. 이 논문에서는 저널 베어링의 안전해석에 지진하중을 정적 하중으로 보았으나 향후 연구에 있어서는 지진하중의 동적 특성을 회전체에 적응하는 새로운 해석적 방법의 개발이 필요할 것으로 사료된다.

회전체 Whirl 운동을 고려한 고압용 래비린스 씰의 동적 특성에 관한 연구 (Study of the Dynamic Characteristics of a High-Pressure Labyrinth Seal Considering Rotor Whirling)

  • 김재실;이경진;신민재
    • 한국정밀공학회지
    • /
    • 제32권8호
    • /
    • pp.713-718
    • /
    • 2015
  • This article describes the calculation procedure for the dynamic characteristics of a high-pressure labyrinth seal wherein the friction force and rotor whirling force are considered; SFCP, the commercial code developed by Lee and two colleagues, is used in the procedure. The simulation results were reviewed in comparison to those of the experiments provided by Benckert; additionally, the SFCP simulation results were verified using the CFD analysis presented by Toshio Hirano. This calculation procedure may therefore be applied to the dynamic characteristics of the labyrinth seals of high-pressure turbo machinery.

로터-베어링 시스템의 훨링속도 해석을 위한 유한요소 정식화 (Finite Element Formulations of the Rotor-Bearing System for Whirl Speed Analysis)

  • 윤성호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.625-630
    • /
    • 2007
  • This paper accounts for derivations and formulations of the finite element dynamic equation of the rotor-bearing system to analyze its whirling speed. It turns out to be a different form from previous researcher's because of different successive sequences of Euler angles. Correspondingly the adoption of other rotation tensor will be needed for a consistent derivation of the dynamic equation. The process of its finite element formulation with consistent mass matrix and gyroscopic matrix involves a general definition of the modal analysis or the Eigen analysis for the damped system in the inertial frame and rotating frame, respectively.

  • PDF