Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.4.529

Analysis, Modeling and Compensation of Dynamic Imbalance Error for a Magnetically Suspended Sensitive Gyroscope  

Xin, Chaojun (Equipment Academy)
Cai, Yuanwen (Equipment Academy)
Ren, Yuan (Equipment Academy)
Fan, Yahong (Beijing Institute of Control Engineering)
Xu, Guofeng (Equipment Academy)
Lei, Xu (Jiuquan Satellite Launch Center)
Publication Information
Abstract
Magnetically suspended sensitive gyroscopes (MSSGs) provide an interesting alternative for achieving precious attitude angular measurement. To effectively reduce the measurement error caused by dynamic imbalance, this paper proposes a novel compensation method based on analysis and modeling of the error for a MSSG. Firstly, the angular velocity measurement principle of the MSSG is described. Then the analytical model of dynamic imbalance error has been established by solving the complex coefficient differential dynamic equations of the rotor. The generation mechanism and changing regularity of the dynamic imbalance error have been revealed. Next, a compensation method is designed to compensate the dynamic imbalance error and improve the measurement accuracy of the MSSG. The common issues caused by dynamic imbalance can be effectively resolved by the proposed method in gyroscopes with a levitating rotor. Comparative simulation results before and after compensation have verified the effectiveness and superiority of the proposed compensation method.
Keywords
Magnetically suspended sensitive gyroscope (MSSG); dynamic imbalance; angular velocity; error compensation method; measurement accuracy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Q. Tang, B. Liu, J. C. Fang, and S. S. Ge, J. Vib. Control 19, 1962 (2013).   DOI
2 Y. Ren and J. C. Fang. Math. Probl. Eng. 2014, 1 (2014).
3 X. C. Chen, Y. Ren, and J. C. Fang, J. Mech. Eng. Sci. 228, 2303 (2014).   DOI
4 Y. Ren and J. C. Fang, IEEE Trans. Ind. Electron. 61, 1539 (2014).   DOI
5 C. J. Xin, Y. W. Cai, Y. Ren, and Y. H. Fan, J. Magn. 21, 356 (2016).   DOI
6 C. J. Xin, Y. W. Cai, and Y. Ren, J. Mech. Eng. Sci. doi: 10.1177/0954406216629503(2016).   DOI
7 Y. Maruyama, T. Mizuno, M. Takasaki, Y. Ishino, and H. Kameno, J. Mechatronics 19, 1261 (2009).   DOI
8 Y. Maruyama, T. Mizuno, M. Takasaki, Y. Ishino, and H. Kameno, J. Sys. Design Dyna. 3, 954 (2009).   DOI
9 J. F. Shortle and M. B. Mendel, Probabilist Eng. Mech. 11, 31 (1996).   DOI
10 Y. Maruyama, T. Mizuno, M. Takasaki, Y. Ishino, H. Kameno, and A. Kubo, IEEE Trans Ind Electron. 61, 1911 (2009).
11 H. Raoul, B. Philipp, and G. Conrad. IEEE Trans Control Syst. and Technol. 4, 580 (1996).   DOI
12 S. Jue, R. Zmood, and L. Qin. Control Eng. Pract. 12, 283 (2004).   DOI
13 A. Tomohiro, T. Mizuno, T. Masaya, and Y. Ishino, J. Jpn. Soc. Appl. Electromagn. Mech. 22, 220 (2014).   DOI
14 T. Mizuno, A. Tomohiro, T. Masaya, and Y. Ishino, IEEE/ASME Trans Mechatronics 21, 1151 (2016).   DOI
15 T. Schuhmann, W. Hofmann, and R. Werner, IEEE Trans Ind. Electron. 59, 821 (2012).   DOI
16 Y. H. Fan, J. Y. Chen, D. L. Weng, and Y. T. Lee, J. Appl. Phys. 103, 103 (2008).
17 M. Queiroz, J. Vib. Control. 15, 1365 (2009).   DOI
18 P. L. Cui, J. X. He, J. C. Fang, X. B. Xu, J. Cui, and S. Yang, J. Vib. Control. doi: 10.1177/1077546315576430 (2015).   DOI