• Title/Summary/Keyword: Rotor Core Slot

Search Result 22, Processing Time 0.035 seconds

Evaluations of Swaging Process for Rotor Core of Induction Motors (유도전동기 회전자 제작시 압입작업 평가)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.21-26
    • /
    • 2016
  • This study evaluates the magnitudes and distributions of contact tangential forces with the swaging depth of punch acting at the contact surfaces between a rotor core slot and a Cu bar during a sequential rotor core swaging process. The effects of the core slot shape on the magnitudes and distributions of the total contact forces were investigated to improve the productivity of the rotor core swaging process. Parametric elastic-plastic numerical analyses were performed using simplified two-dimensional cyclic symmetric plane strain models to evaluate the contact force distributions at the contact surfaces. The numerical analysis results show that the total contact tangential forces increased by about 55% with the adjacent Cu bar swaging process. The length of the core slot is a dominant factor in the core slot design as result of the increased total contact tangential forces during the swaging process of the rotor core.

Establishment of Design Criteria for Slot Shape Considering Castability of Aluminum Diecasting Process for Large Industrial Motor Rotor (대형 산업용 전동기 회전자용 알루미늄 다이캐스팅의 주조성을 고려한 슬롯 형상 설계 기준 정립)

  • Lee, Sung-Mo;Kim, Deok-Su;Park, Tae-Dong;Yoon, Young-Cheol
    • Journal of Korea Foundry Society
    • /
    • v.36 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • Numerical analysis has been performed to evaluate effect of the shape variables such as core length, slot width and slot length on misrun in aluminum die casting process for motor rotor. The predictive method for misrun in diecasting process was established by comparing the result of numerical analysis and an actual motor rotor. Solidification modulus was introduced to predict quantitatively the castability of aluminum diecasting process for motor rotor. It was found that there are minimum critical solidification modulus and slot width to prevent misrun according to core length through diecasting limit diagram proposed using the predictive method. The critical solidification modulus and slot width increase as core length increases to prevent misrun of aluminum motor rotor in diecasting process. Based on the results, the design criteria of slot shape to prevent misrun of aluminum motor rotor with various core length were established.

A Study on the Stress Distribution in Rotor Core inserted with Cu bar (Rotor에 대한 Cu-bar 압입시 응력분포에 대한 연구)

  • 박상철;김현수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.251-254
    • /
    • 2003
  • In this study, main works are focused on investigating the stress distribution at the interface between a rotor core and Cu bar when a punch is applied into the body of Cu bar. A parametric study with dimensional changes of core slot was performed numerically to identify what factors are dominant in producing high contact forces in the interface. As analysis results, it was found that core slot length was a dominant factor in increasing contact force at the interface between a rotor core and Cu bar.

  • PDF

Quality Evaluations of Induction Motor Rotors during Die Casting Process II (유도전동기 회전자 금형주조 시 품질평가 II)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.347-352
    • /
    • 2019
  • This study focused on improving the cast quality of small-sized induction motor rotors during the die casting process. A new rotor core cast model was proposed based on previous research results and parametric studies. Numerical analyses using 3-dimensional half models were performed to evaluate the filling patterns of aluminum molten metals into a mold and on-site experiment performed to verify the newly proposed cast model. The following were obtained from numerical filling analyses and experimental results. First, molten metals started to fill the lower end ring, then moved on to fill the core slot and upper end ring and finally stopped to fill at the rotor core slot. Second, significant circulation of molten metals was not observed on the lower end ring, resulting in fewer defects at the section of the lower end ring from the experimental results. Third, the new shape of a rotor core cast was effective in producing rotors with sound cast quality, and reducing the end ring cast defect area by approximately 70 %.

Quality Evaluations of Induction Motor Rotors during Die Casting Process (유도전동기 회전자 금형주조 시 품질평가)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.115-120
    • /
    • 2018
  • This study examined the cast quality of small-sized induction motor rotors during the die casting process. Numerical analyses with 3-dimensional half models were performed to investigate the filling patterns of aluminum molten metals into a mold after high-speed injections. The following were obtained from numerical analyses and experimental results. First, molten metals started to fill the lower end ring, then moved horizontally to fill the core slot and upper end ring, and finally stopped to fill the rotor core slot. Second, circulation of molten metals occurred at the lower end ring, resulting considerable porosity at the section of lower end ring from the experimental results. Third, further work for obtaining sound quality of rotor core cast is required to develop a new shape of the rotor core cast or improve the die casting conditions.

Evaluations of Swaging Process for Rotor Core of Induction Motors II (유도전동기 회전자 제작시 압입작업 평가 II)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.464-469
    • /
    • 2017
  • This study evaluated the displacements of a Cu bar in the Y-direction and the relationship between swaging pressures and total contact forces to increase the productivity of the rotor core swaging process. Elastic-plastic numerical analyses of four different Cu bar shapes were performed with a constant swaging pressure to evaluate the displacements of the Cu bar in the Y-direction and the contact force distributions at the contact surfaces during the swaging process. Based on the numerical analysis results, the following conclusions were obtained. First, a simplified 2-dimensional cyclic symmetric analysis model was developed for the numerical analysis of the rotor core swaging process. Second, the final displacements of the Cu bar in the Y-direction were nearly the same as the change of the Cu bar size at a constant swaging pressure. Third, a linear relationship between the swaging pressures and the total contact forces, the so called resistance forces, was suggested.

Analysis on Torque of Solid Iron Rotor Induction Motor (In Rotor without Slot) (강괴철심회전자를 가진 유도전도기의 토오크 해석)

  • Yun Jong Lee
    • 전기의세계
    • /
    • v.21 no.2
    • /
    • pp.5-8
    • /
    • 1972
  • The purpose of this paper is, as a preliminary step to study on the method of analysing the torque of toothed solid iron rotor, to make an inquiry into the torque calculation formula of homogenious solid iron rotor without slot. The starting point for its theoretical analysis on torque generated by eddy current in solid iron rotor is based on the maximum air gap flux density. In solid rotor induction motor, torque generated by rotor core is considerably large in the range of large slip. The calculated value and observed value on the test machine are also examined in this paper.

  • PDF

Rotor Slot Shape Optimization for the Improvement on Slip-Torque Characteristics (속도-토오크 특성개선을 위한 회전자 슬롯 형상 최적화)

  • Kwak, I.G.;Lee, H.B.;Park, I.H.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.208-210
    • /
    • 1994
  • In this paper, the design sensitivity evaluation based on the 2-dimensional finite clement discretization is presented for the voltage source and eddy current problem. And it is applied to the two shape design problems of the rotor slot of 3-phase squirrel cage induction motors. The first is to increase the starting torque while keeping the rated torque fixed. The other is only to increase the torque at the rated speed while keeping the starting torque fixed. As an optimization method, the Gradient Projection method is used to control casily the torques for various speeds of rotor. One fourth of rotor is analyzed by using a semi-periodic boundary condition. Because the shape of rotor slot has much influence on the slip torque characteristic, the 10 design parameters are taken on the interface between rotor core and rotor bar. The initial shape of rotor slot is the trapezoidal typo with rounding corners.

  • PDF

Shape Design of Induction Motors for Efficiency Improvement (유도기 효율향상을 위한 회전자슬롯 형상최적화)

  • Kwak, In-Gu;Lee, Hyang-Beom;Park, Il-Han;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.929-931
    • /
    • 1993
  • The design sensitivity analysis based on the finite element method is presented for the eddy current problem with a voltage source. Since, in this problem, the complex variable is used as the state variable, new approach to the sensitivity calculation for the complex variable system is required. Its result is applied to the design of the rotor slot shape of squirrel cage induction motor. As a analysis model, only one slot pitch of rotor is analyzed by using a Periodic boundary condition. The use of this minimal modelling method leads to much saving of calculation time. The design objective is to obtain the desired slip-torque characteristic. Because the shape of rotor slot has much influence on the slip torque characteristic, the design variables are taken on the interface shape between rotor core and rotor bar. The initial shape of rotor slot is the trapezoidal type with rounding corners. The obtained final shape is quite similar to the double squirrel cage type.

  • PDF

A Study on the Reduction of Cogging Torque of Outer-Rotor Type BLDC Motor for Washing Machines (세탁기용 외전형 BLDC 전동기의 코깅 토오크 저감에 관한 연구)

  • Kim Jae-Min;Chang Cheul-Hyeok;Chung Tae-Kyung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.5
    • /
    • pp.222-230
    • /
    • 2005
  • This paper deals with the reduction of cogging torque of a outer-rotor type BLDC motor mainly used for washing machines. The motor comprises permanent magnet outer-rotor and stator with coils and core. This structure inherently produces vibration and cogging torque because of uneven reluctance according to rotation of the rotor. Up to now, adopted a type of 24 magnet pole and 36 slot-stator. This generates high main torque but accompanies comparatively large cogging torque. This paper proposes a 32-pole 36-slot type motor which reduces cogging torque remarkably. The influence of cogging torque is varied according to pole-slot combinations. The characteristic of the motor was obtained by a two-dimensional finite element method coupled with a drive circuit. The performance of the proposed model is superior to that of the existing model because of the reduction of torque ripple and the improvement of back ernf wave form.