• Title/Summary/Keyword: Rotor 37

Search Result 120, Processing Time 0.034 seconds

Static Fluid-Structure Coupled Analysis of Low-Pressure Final-Stage Turbine Blade (발전용 저압터빈 최종단 블레이드의 정적 유체-구조 연계해석)

  • Kwon, Sun-Guk;Lee, Young-Shin;Bae, Yong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1067-1074
    • /
    • 2010
  • In this study, a loosely coupled fluid-structure interaction (FSI) analysis was conducted for a low-pressure (LP) final-stage rotor blade. Preliminary FSI analyses of a $15^{\circ}$ sweptback wing and a NASA Rotor 37 compressor blade were performed for verifying the boundary conditions. The results were compared with the established literatures for each model. The FSI analysis of the $15^{\circ}$ sweptback wing was carried out under both stable and unstable conditions. The excessive deformation of the wing was observed within 0.05 s under the unstable condition which is higher than the divergence speed of a wing compared with the stable condition. On the basis of the results of a steady-state study, an unsteady state FSI analysis was conducted for a NASA Rotor 37. Different deformations were observed at trailing edge of the blade in the static FSI and dynamic FSI analysis. A 3D FE model of a LP rotor was generated from the span-wise section data. In order to develop a reasonable model, an impact test was performed and compared to the FE model. Using this FE model, the steady-state FSI analysis was performed successfully.

Dynamic Analysis of Rotor Systems Considering Ball Bearing Contact Mechanism (볼 베어링의 접촉 메커니즘을 고려한 회전체 시스템의 동적 해석)

  • Kim, YoungJin;Lee, Jongmahn;Oh, Dongho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1535-1540
    • /
    • 2013
  • We propose a finite element modeling method considering the ball bearing contact mechanism, and the developed method was verified through experimental and analytical results of inner and outer race-type rotor systems. A comparison of the proposed method with conventional method reveals that there is little difference in the results of the inner race-type rotor system, but there are considerable differences in the results of the outer race-type rotor system such that predictions of greater accuracy can be made. Therefore, the proposed method can be used for accurately predicting the dynamic characteristics of an outer race-type rotary machine.

Implementation of a Senseless Position Controller Capable of Multi-turn Detection in a Turret Servo System (터렛 서보 시스템에서 멀티-턴 검출이 가능한 센서리스 위치제어기 구현)

  • Cho, Nae-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.37-44
    • /
    • 2021
  • This study is implemented as a sensor-less position controller capable of multi-turn detection to replace the expensive absolute encoder used in the turret servo system. For sensor-less control, the position information of the rotor is essential. For this, a magnetic flux estimator was implemented from the mathematical model of IPMSM used in the turret servo system. The position of the rotor and the angular velocity of the rotor were obtained using the rotor magnetic flux calculated from the magnetic flux estimator. Using the zero-crossing technique, one pulse was generated for each rotation of the estimated rotor magnetic flux to measure the number of multi-turns. Simulation and experiment results confirmed the usefulness of the proposed method.

Analysis of the Spreading uniformity of House Slurry Spreader (호스지표살포기의 살포균일도 분석)

  • 오인환
    • Journal of Animal Environmental Science
    • /
    • v.6 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • A new hose slurry spreader with improved spreading uniformity is developed to distribute the slurrynear to the soil surface and to reduce odor problems. The precision of distributed slurry was investigated using 3 types of slurry and found to be dependent on the rotor speed. For the solid matter separated fluid containing 0.1% of dry matter rotor speed of 150 rpm showed best uniformity with CV of 10% In the case of slurry from dairy cattle which contains 8.2% of dry matter high rotor speed of 330 rpm showed best result with CV of 7.2% Also swine slurry which has a 13.6% of dry matter content showed the best result of 8.1% CV at the high rotor speed of 250rpm. A high rotor speed generates enough pressure in the central distributor and as a result uniform distribution of slurry can be achieved. In conclusion it is highly recommended rotor speed of 300 rpm to get the best performance.

  • PDF

Numerical Investigation on Interference Effects of Tandem Rotor in Forward Flight (전진 비행하는 탠덤로터의 간섭효과에 대한 수치적 연구)

  • Lee, Jae-Won;Oh, Se-Jong;Yee, Kwan-Jung;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.615-626
    • /
    • 2009
  • The objective of this study is to investigate the interference effects due to tandem rotor's overlap in the forward flight. To resolve the instabilities caused by close proximity of the wake to the blade surface, the field velocity approach is implemented to the existing unsteady panel code coupled with a time-marching free wake model. The modified code is then used to investigate the effects of the selected parameters on the forward flight performance of the tandem rotor. The calculated results for rotor separation effect indicate that stagger(d/D) appears to have little effects on the forward flight performance at high advance ratio and the square of gap(H/D) is inversely proportional to overlap induced power factor. In addition, it is also shown that the overlap induced power factor increases to a certain extent and decrease back as the advance ratio increases.

Development and Verification of Small-Scale Rotor Hover Performance Test-stand (소형 로터 블레이드의 제자리 비행 성능 시험장치 개발 및 검증)

  • Lee, Byoung-Eon;Seo, Jin-Woo;Byun, Young-Seop;Kim, Jeong;Yee, Kwan-Jung;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.975-983
    • /
    • 2009
  • This paper presents the work being carried out in order to deduce hover performance of a small-scale single rotor blade as a preliminary study of a small coaxial rotor helicopter development. As an initial research, a test stand capable of measuring thrust and torque of a small-scale rotor blade in hover state was constructed and fabricated. The test stand consists of three parts; a rotating device, a load measuring sensor and a data acquisition system. Thrust and torque were measured with varying collective pitch angle at fixed RPM. Through this research, hover performance tests were conducted for a small-scale single rotor blade operating in low Reynolds number ($Re\;{\approx}3{\times}10^5$), as well as for verifying the test stand itself for acquiring hover performance.

A Comparative Study of Numerical Methods on Aerodynamic Characteristics of a Compressor Rotor at Near-stall Condition

  • Kim, Donghyun;Kim, Kuisoon;Choi, Jeongyeol;Son, Changmin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.157-164
    • /
    • 2015
  • The present work performs three-dimensional flow calculations based on Reynolds Averaged Navier-Stokes (RANS) and Delayed Detached Eddy Simulation (DDES) to investigate the flow field of a transonic rotor (NASA Rotor 37) at near-stall condition. It is found that the DES approach is likely to predict well the complex flow characteristics such as secondary vortex or turbulent flow phenomenon than RANS approach, which is useful to describe the flow mechanism of a transonic compressor. Especially, the DES results show improvement of predicting the flow field in the wake region and the model captures reasonably well separated regions compared to the RANS model. Besides, it is discovered that the three-dimensional vortical flows after the vortex breakdown from the rotor tip region are widely distributed and its vortex structures are clearly present. Near the rotor leading edge, a part of the tip leakage flows in DES solution spill over into next passage of the blade owing to the separation vortex flow and the backflow is clearly seen around the trailing edge of rotor tip. Furthermore, the DES solution shows strong turbulent eddies especially in the rotor hub, rotor tip section and the downstream of rotor trailing edge compared to the RANS solution.

An Analysis of BVI Unsteady Rotor Aerodynamics using Unsteady Panel and Time-Marching Free Wake (비정상 패널 및 시간전진 자유후류를 이용한 BVI 비정상 로터 공력 해석)

  • Wie, Seong-Yong;Lee, Duck-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.329-335
    • /
    • 2009
  • The unsteady panel and time-marching free wake are applied to the rotor aerodynamics and wake behaviour. Numerical results of panel and free wake are compared and validated with experimental data. Using these methods, unsteady rotor aerodynamics in BVI condition is analyzed and discussed in detail.

A Finite Element Formulation for Vibration Analysis of Rotor Bearing System

  • Park, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4E
    • /
    • pp.37-44
    • /
    • 1996
  • To get accurate vibration analysis of rotor-bearing systems, finite element models of high speed rotating shaft, unbalance disk, and fluid film journal bearing are developed. The study includes the effects of rotary inertia, gyroscopic moment, damping, shear deformation, and axial torque in the same model. It does not include the axial force effect, but the extension is straighforward. The finite elements developed can be used in the analysis design of any type of multiple rotor bearing system. To show the accuracy of the models, numerical examples are demonstrated.

  • PDF

Steady State Analysis of a Stand-alone Induction Generator with AC Rotor Excitation (회전자 문류\ulcorner\ulcorner방식의 자립형 유도발전기의 정상상태 해석)

  • 박민호;정승기;이진우
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.1
    • /
    • pp.33-39
    • /
    • 1988
  • In this paper, a stand-alone wound rotor induction generator system is proposed and its steady state characteristics are analyzed. It is shown that the self-excitation of the system can be acheined by exciting the rotor through the PWM inverter. The analysis is based upon the eguivalent circuit and the steady state dq model of the mahine. The results show that the proposed system can be made to generate constant voltage constant frequency power for various speed and load conditions.

  • PDF