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Abstract

To get accurate vibration analysis of rotor beari ng systems, finite element models of high speed r이Ming shaft, unbalance 
disk, and fluid film journal bearing are developed. The study includes the effects of rotary inertia, gyroscopic moment, 
damping, shear deformation, and axial torque in the same model. It does not include the axial force effect, but the exten­
sion is straighforward. The finite elements developed can be used in the analysis and design of any type of multiple rotor 
bearing systems. To show the accuracy of the models, numerical examples are demonstrated.
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I. Introduction

Many analytical methods have been used to determine 
the free and forced response characteristics of rotor bearing 
systems. Most of the methods have been based on the 
transfer matrix concept or on the direct stiffness approach 
such as the finite element method. Using lhe finite 
element method, it is posible to formulate increasingly 
complicated problems and the use of powerful computers 
makes it possible to solve large ordered system equations. 
Large ordered eguations are not desirable, because they 
require more storage space, more computational time, 
and have more computational errors. So, to reduce the 
computational efforts, the banded property of the system 
matrices can be utilized.

Finite element models of rotor bearing sy이ems have 
been reported by several researchers in the area of 
rotordynamics since 1970. Ruhl and Booker|l| reported 
the first examples of the studies. In their studies, the 
effects of rotary inertia, gyroscopic moment, shea' defor­
mation, axial load, and internal damping haxe been 
neglected. Since that time several investigators|3, 4, 5, 6] 
have studied similar problems including different effects. 
Nelson used Timoshenko beam theory to establish the 
shape functions of a rotating shaft elenient|3]. In his 
model the effects of rotary inertia, gyroscopic moment, 
axial load, and shear deformations are considered. 
Ozguben and Ozkan[7] developed the most generalized 

finite element model. They considered the effect of 
internal damping but neglected the effect of axial torque, 
using the shape functions developed by Nelson. Although 
the various effects on dynamics of rotor bearing systems 
have been studied using the finite element method by the 
researchers, the combined effects of flexural and torsional 
deformations are not considered. Their models have 4 or 
less degrees of freedom per each node.

In this study, to get a more accurate analysis of high 
speed rotor bearing systems, the previous studied are 
generalized, and finite element models are developed. The 
study includes the effects of rotary inertia, gyroscopic 
moment, dampings, shear deformation, and axial lorq니c 
in the same model, which has 5 degres of freedom per 
node. It does not include axial force but the extension is 
straightforward, using the same scheme. The finite elements 
developed in this study can be used in the analysis and 
design of any type of multiple rotor bearing system. To 
show the accuracy of the models, numerical examples are 
demonstrated.

II. Modelling

A typical rotor bearing system is composed of shafts, 
disks, and bearings. In this study, finite elements of a 
high speed rotating shaft, an unbalanced disk, and a fluid 
film jo나rnal bearing are developed. The common way to 
formulate finite element equations is through variational 
methods such as Rayleigh-Ritz method, weighted residual 
methods such as Galerkin's method, and the least square 
methods. In this study, G시erkin's finite element method 
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is used.

2-1 High speed shaft 티ement

Figure 1 shows a shaft element of length of L with the 
coordinate used to describe the end point displacements 
and rotations. The shaft element is considered to be 
initially straight and the cross section is circular and 
modelled as a 2-node element. Each node has 5 degree of 
freedom, 2 translations and 3 rotations. Figure 2 나)ows 
the free body diagram, we can write the partial differential 
equations of motion and the finite element equations of 
motion can be derived based on Galerkin's finite element 
method. Equilibrium equations in x-y plane become

pAAxv = Qy(x t}~Qy(x, t) (1)
1

pAv= ~~ (Qy(x t)~Qy(x, Z)) ⑵

E - plAxO-pIpAxQ(j> =M2(r+Jx, t)

+ 0卩£) ；즈 +0y(x+£)《% (3)

Let Jx approach to zero. Then

pAv-Qyx (4)
pI()-plpQ^ = A/八 十£ (5)

In the same way, equilibrium equations in x-z plane and 
torsion become

pAw = Qz x (6)

plO-pIpQO = (7)
plrp-GIpi/} xx (8)

where F and Q represent forces, M means moment, and 
subscript x, y, and z are dire아ions, p, A, I, Ip, andP rep-

10 DOF per Elemem ( 5 DOF per Node )

Figure 1 High speed shaft element

resent density, cross sectional area, moment of inertia, 
pol잔!' moment of inertia, and rotating speed, respectively, 
U w, (), and 故 represent deformations and ,x and ,xx mean 
djdx and d2/dx2, and G is shear modulus.

Ty=lpO^

a

X

Qz(x+dx)

My(x+dx) Tz= -IpQg

Z

Figure 2 Free body diagram for the shaft element

From Timochenko beam theory, shear and bending 
strains in x-y plane are defined by u x~0 and 0 x and in 
x-z plane are defined by w x-\-(p and (p x. Then from the 
stress strain relationship we can write

Qjx, t) = kAGr(x, t) = kAG(v^x-0') (9)
0,(x, t)^kAG (叫，+。) (10)

(11)
Mv(x, Z)=引0, (12) 

where E is Yo니ng's modulus, k is shear constant, A and 
r mean shear and bending strains, respectively. From 
equations (4) to (12),

pAv = kAG(vx-0) (13)
pAw~kAG (w x +。) (14)
pIO — pIpQ© = El0 xx + 泛4Gx~0) (15)

pH 一pl»Q0 = El©$ ^-kAG(w x — ^) (16)
= 球 (17)



A Finite Element Formulation for Vibration Analysis of Rotor Bearing Systems 39

Equations (13) to (17) are the strong forms of the 
equations of motions. From the strong forms, we can 
form the weak forms mutiplying the strong forms by 
weight or trial functions, Si, i - 1, 2, 3, 4, 5, and partial 
integrating through the element.

pA f£(S] v +S2w)dx +pl 0 +S4^)dx
Jo Jo

Ss dx pIpQ (L (S4 0 dx
Jo Jo

+ EI fL(S3 rO r+^4, x^.^dx +GIp「'，"妇邮々
Jo Jo

^kAG f [ (S x —5*3)(y y — °) + (S? x +&) (z〃，x +0)] dx 
Jo ' '

0)WL /) +&(庭”,/) + W)", /) +54(£)A/y(L, t) 
+&0)忆(丄,£)—S(0)Qy(0, /)-53(0)22(0, £)一&(0)仇(0, Z) 
-S4(0)M/0, Z)-S5(0)Mx(0, t) (18)

Now we need to discretize the struture to get solutions 
which can be expressed as a linear combination of shape 
.unctions and nodal displacements.

vh(x, f)시M,]{g(t)} (19)
wh(x, £)니jVw]{<7。)} (20)
俨 (x*) 니 Ml{q(£)} (21)

t)니M】{g(f)} (22)
俨 (.*) 니？%,] {W)} (23) 

where

"V」니M 0 0 M 0 M 0 0 M 0]
[MJ 니。M -7V3 0 0 0 M —Na 0 0|
H&] 니 M 0 0 M 0 M 0 0 M 이

I" 니。M — M 0 0 0 /v4 -m 0 o]
IM]니0 0 0 0 M 0 o o 0 M】

where M and M are shape functions, superscript h means 
discretized value. Shape functions developed by Nelson[3| 
were used (see Appendix), though any kind of good shape 
functions can be used.,

For isoparametric elements, the same shape functions 
are used to discretize 나le weight or trial functions.

S7=[S][NJ (24)
S；=【S][Mjr (25)
身=[S][M> 卩’S；：, =⑸圈卩 (26)
S： = |S][A시「S、= (S][8jr (27)
‘*心][心卩况丄=⑸禺F (28)

[S]니S] S2 S3 S4 ■*  Sf, S7 Sg S]o]
[Bk]=-d/dx[Nk], k = v, w,亿奴中

Subsitituting equations (19) to (28) into equation (18) 
and factoring out the constant matrix |S], 나len we get 
finite element equations fo motion for the element as 
follows

\M]eq{q}-Q\G] {q}+[KWG = {R}四 (29)

when we include the damping term, then the finite 
element equation becomes

lA/1：, W +[CVeq{q} +\K]^{q} = {RVeq (30)

where

\M\„=pA ^N^Nydx+pIt，\：N±N*dx

|C](, = [C]-n|G]

|K|w = E/「B^Bydx+kAGg B；%，dx

[Nd, [ Ny|, [ By], and B$ are 2 by 10 matrices, which are 
represented by

W或::】

皿知

[이=[ 幻

㈤花构

When the model is extended to include axial load, the 
equilibrium equations in x direction become

= pAAxu = Qx(x + Ax, t)-Qx(x, t) (31)

느"! (2x(x+Jr, t)-Qx(x, t)) (32)

= /)- Mx(xy t) (33)

pl$仲=' (A/X(x + Jx, t) - Afx(r, Z)) (34)
Jx

Then,

plu =Elu xx (35)
(36)Where
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Adding equation (36) to the equilibriums of the system, 
the finite element equations will be easily formulated in 
the same way.

2.2 Unbalance disk element

A sufficiently stiff disk can be idealized as rigid. In this 
study, the disk is assumed to be thin and very stiff. F?igure 
3 shows a typical unbalanced rigid disk, with mass m払 

inertia moment 恥、and polar inertia moment lp. The 
(r, z) coordinate is an inertia reference with the x axis 
coinciding with the undeformed center line of the shaft 
element. The (n｝, n2,力J triad is a rotating body fixed ref­
erence with its nl coincedcnt with x axis. The(ZZ), n2, 
triad rotates at a uniform rateQ about x axis. Point O is 
geometrical center, point G is the center of mass, and e 
represents the eccentricity. Then the force due to 
unbalanced mass, Fe can be written as

F =卩哉！ 严 I = I ncosmysinm 丨
厂一 I P,z I \ ny\\ y(.sinQt "cos”"

Fey and Fex are the forces due to unbalanced mass in v 
and z directions, ye and 《are the mass center 
eccentrictics of the disk in v and z directions at t = 0.

From the c이uHibrium,

= = Py ^mQ2(yecos<2 Z-2^sin Qt) (37)
£」'此=”1祯=巳 I-mH*'(5'(;cosP/ —<,sin Qt) (38)
工此-顷話 (39)

、‘二 I抑二Tp(W (40)
工赫=7、 (41)

Then, the equilibrium equations are

m(i y 二 Py + 卜宵 (42)
rndz Pz 4 />2 (43)
l,/() 4 =() (44)
爲—iq 0 -0 (45)

扁-匸 (46)

P、and P： arc applied forces in y and z directions, Tz is 
the applied torque.

The rigid disk clement has 5 DOF, 2 translations and 3 
rotations, as shown in Figure 3. Then from the equilib­
rium. the Unite clement equation can be represented as

\M] ｛치 = "/ (47)

where

o
 o
 o
 o
 A, 

o
 o
 o
 h-o 

o
 o
 s

 o
 

0
^
-
0
 0
 0

.XJ-

|S| =

｛財=

2.3 Fluid film journal bearing 이ement
For the modeling of bearings for latcal motion, the 

eight bearing coctTicicnt model as shown in Figure 4 is 
used and any inertial effects are assumed to be negligible. 
The bearing cocft'icients can be approximated based on 
the scheme of Chapter 6 in referencefl 11 or can be 
adapted from the bearing design handbook written by 
Lund[8]. For the torsional motion, damping coefficients 
can be approximated using the Pcttloff s law, which is 
established to explain the phenomenon of bearing friction. 
The frictin torque Mt is

I "二

巳+H, 
, 0

0
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4Mr 宇 /36厂场=〃 (48)

where rj is viscosity, r is radius of the journal, c is radial 
clearance, I is bearing length, and N is rpm. The inertial 
effect and torsional stiffness are assumed to be negligible. 
Then the equivalent torsional damping becomes

(49)

. 4Nn2r21 ,、
G = ; = r, I、c) = 하 --- -------- (50)

Q 60c

where<2 is rotational speed.

qi

In finite element analysis, each journal bearing can be 
modelled by using a set of spring and dash pot at the 
journal center, as a point element with 3 degrees of freedom, 
two translations and one rotation as shown in Figure 4. 
Then finite element equations for the bearing element 
become

lc]{&}+[K]{a} = S} (51)
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where {力} is bearing force vector. In expanded form, 
fluid film journal bearing also can be idealized by two or 
three sets of springs and dash pots at the end points of 
the journal, or the three points located equidistantly 
along the journal axis respectively.

2.4 System equations
The finite element equations of motion of the complete 

system can be written as

\M\ {하+[C”g}+[Kl {q} = {/} (52)

where [M], [C], and [AT] are the mass, damping including 
gyroscopic moment, and stiffness matrices of the system 
obtained by assemblying the element matrices. Due to the 
bearing coefficients, [K] and [C] may be neither sym­
metric nor skew symjmetric, but they are hig미y banded 
in general.

Generally speaking, dynamic problems can be classified 
by two broad classes. In one, we ask for the dynamic 
responses with time, under prescribed loads, impulses, or 
gro니nd accelerations. In the other, we ask for the 
eigenvalues of the governing system equations which tell 
us the stability of the system, natural frequencies, and the 
corresponding mode shapes. In rotordynamics, eigenvalues 
are found in the form

a = A+油 (53)

where co is the whirl speed. 1 and cd are real. Logarithm 
decrement, is defined as

O =--------
co (54)where
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HI. Dynamic responses

Equation (52) is a typical form of the system equations 
in dynamic problems. Since the order of the coefficient 
matrices [ M |, [C |, and | K ] is large in finite element 
analysis, the procedure for the solution of the system 
equations can be very expensive 니이ess the special 
charateristics of the systmc matrices are taken advantage 
of. The solution prodedurcs arc considered as two 
methods, direct integration and modal method or mode 
superposition method. In direct integration, the equations 
are integrated using a numerical step by step procedure. 
The term direct means that no transformation of the 
equations into different forms is performed prior to the 
numerical integration. In modal method or mode super­
position method, matural frequencies and mode shapes 
are extracted by solving eigenvalue problems and the 
dynamic responses are expressed as the sum of normal 
modes in appropriate portions. Systems that are subjected 
to arbitrary loads become extremely difficult to analyze in 
the physical domain. These difficulties can be avoided 
using modal method in modal or natural domain.

Direct integration equations are either explicit or 
implicit. Explicit methodes find the responses at time t 

by use of the equations of motion written at time t、 
while implicit methods find the responses at t + JZ from 
the equations of motion written at time t Usually, 
explicit methods allow a small time step b나t produce 
equations that are cheap to solve, while implicit methods 
allow a large time step but produce equations that are 
expensive to solve. Use of different values of time step in 
different parts is also possible. Most explicit methods are 
conditionally stable. Most unconditionally stable methods 
are implicit. In unconditionally stable methods, the size of 
time step is decided by accuracy rather than stability. 
Many algorithms for dynamic responses are a bailable in 
text books [9, 10], In 1959, Newmark generalized certain 
direct numerical integrations that had been used up to 
that time, which is still a popular method for dynamic 
responses. Often mathematicians recommend the fourth 
order Runge-Kutta method. In this study, to solve the 
system equations, Mewmark's method is used.
s method is based on the ass니mplion

0+小+小 + 贞(小)2 Qt+At (55)

们+小=么+小 (56)

&+』r-7/+JZ^+0.5(jn2 (I —2历袞 (57)

(58)

A and 7 arc 나顶 numbers that the analyst can choose. 
S니bstil나ting equations (55) to (58) into equation (52), and 
rearranging for q, then

(|0+〃小』+/70)字+"=｛丿⑰+"니 K]£+4(59)

The algorithm operates as follows. We starts at £ = 0. 
initial conditions prescribes % and q申 From these and 
equation (52), can be found. Then equations (55) to (58) 
arc solved for qAt and %、and equation (59) is solved for 
Qjt- With %、and qAh we can find q2At, q顷,and 叽卜 
in the same way, and so on. If At is not changed, the 
coefl'icient matrix needs to be reduced only once. A good 
choice of parameters for an implicit method that is 
unconditionally stable in linear problems is p ― 0.25 and 7 
= 0.5. Then the method is also called the constant average 
acceleration method or the trapezoidal method.

Generally, modal and implicit direct methods are more 
economical in inertial problems, while explicit direct 
methods arc more economical in shock loading and wave 
propagation problems. In linear problems, modal method 
is fabored if only a few modes are needed to describe the 
response. With mode s니perposition, loading histories 
after the Hrst arc analyzed cheaply, but with direct inte­
gration, especially the explicit methods, the second and 
subscquent load histories do not reduce cost as greatly. 
Modal method is suitable if the nonlinearities arc absent 
or small and confined to a few regions of the sti•니cture. 
The explicit approach is often best for nonlinear problems. 
An efficient and versatile computer program sho낞Id be 
able to change automatically from an explicit method at 
an early time, where the time step is small to follow tran­
sient, to an im이icit method at a later time, where a large 
time step is sufficiently accurate.

IV. Results

To confirm the res니Is of this study, simple examples 
are employed as shown in Figures 5 and 6. Figures 7 and 
8 show the whirling and torsional responses at the 
location of the disk for the rigid bearing model. Figures 9 
shows the whirling responses at the location of the disk 
for the flexible bearing model. Solid lines represent 
responses from the method of this study, and cir이e points 
represent the analytical solutions for the steady state 
responses. Since the results agree w이 1, the basic pro-
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cedure is confirmed by such correlation.
In this study, a finite 미emenl model of a rotor bearing 

system is presented. The major advantage of the model is 

that it includes tae effects of rotary inertia, gyroscopic 
moment, internal and viscous dampings, and axial torque 
in the same model. The developed computer program 
gives accurate predictions and will be a valuable tool for 
the analysis and design of a high speed rotor bearing sys­
tem.
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Appendix

Shape Function for High Speed Shaft Element

Ni= 는0("呢)

where I = 1, 2, 3, 4

v= x/1

以］=l—3z? = 2t;3

= 1 —3r2 +2护

& = 1 一0

岛=0.5S-护)

0=12政/电4G产

见? = 3*  - 2护

奁4 = 0.5/( — 0 十 

h = v

瓦=馬怎+站）

§ = % (66"

= 1 +3* —4刃 曲=3v2~-2v

备=0 为=0

(今3 = 1 — 0

N5 = 1 —f

▲Myung项n Choi
Myung Jin Choi was born in 

1954. He received a M.S and a Ph.D 
in Mechanical Engineering from North 
Carolina State University, USA, after 
getting his Bachelor's degree from 
Kyung-Hee University, Seoul, Korea.

He had been with Korea Atomic 
Energy Research Institute, Daejun,

Korea, before he joined department of Mechanical Engin­
eering at Kyung-Hee University as a faculty member in
March, 1993.

▲Se-Gye Oh

1991, he has been

Segye Oh He was born in 1959 in 
Seoul, Korea. He received B. S in 
Mechanical Engineering from Chung- 
Ang University in 1981, and received 
M. S. and Ph. D in Mechanical 
Engineering from North Carolina 
State university, U. S. A in 1988, 
and in 1991, respectively Since May, 
with Korean Advanced Jet Trainer

Structural Development Team, Agency for Defense
Development in Daejeon, Korea

但=().5/(一 〃+ 护)


