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A Finite Element Formulation for Vibration Analysis of Rotor Bearing Systems
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Abstract

To gel accurate vibration analysis of rotor bearing systems. {inite element models of high speed rotaling shaft, unbalunce

disk, and fluid film journal bearing arc developed. The study includes the effects of rolary inerlia, gyroscopic momenl,

damping. shcar deformation, and axial lorque in the same madel. It does not include the axial force elfecl, but the cxien-

sion is straighforward. The finite clements developed can be used in the analysis and design of any (ype of multiple rolor

bearing systems. To show the accuracy of the models, numerical examples are demonstrated.

Keywords ; Rotor bearing system, High speed shait element, Unbalance disk clemenl. Fluid [iIm journal bearing clement,

Strong form, Weak form

1. Introduction

Many analytical methods have been used (o delernine
the free and forced response characteristics of rolor bearing
syslems, Most of the methods have been based on Lhe
transfer malrix concept or on the direct stilfness approach
such as (he finite clement method. Using the finite
clement method, it is posible to formulate increasingly
complicated problems and the vse of powerlul compulers
makes it possible to solve large ordered sysiem equalions,
large ordered eguations are not desirable, hecavse they
requirc more storage space, morc computationsl time,
and have more compulational errors. So, to reduce the
computational efforts, the banded property ol the system
matrices can be uilized.

Finitc clement models of rotor bearing syslems have
been reported by several rescarchers in the area of
rotordynamics since 1970. Rubl and Booker|1]| rzported
the first examples of the studics. In their siudies, the
cflects of rolary inerlia, gyroscopic momenl, shea - defor-
mation, axial load, and internal damping have been
neglected. Since that time several investigators|3, 4, 3, 6]
have studied similar problems including different cffcets.
Nelson used Timoshenko beam (heory 10 estabhish the
shape functions of a rotating shafl clement[3]. In his
model the cffects of rotary inerlia, gyroscopic moment,
axial load. and shear deformations are considered.

Ozguben and Ozkan|7] devecloped the most generalized
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finte elemenl model. They considered the effect of
internal damping but neglected the effect of axial lorque,
using lhe shupe lunctions developed by Nelson. Although
the various effects on dynamics of rotor beanng systems
have been studied nsing the finite clement method by the
researchers, the combined cftecls of flexural and torsional
deformations are nol considered. Their models have 4 or
less degrees of freedom per each nodc.

In (his study. 1o gel & more accurale analysis of high
speed rolor bearing systems, (he previous studied are
generalized, and finite element models are developed. The
study includes the cffects of rolary inerlia, gyroscopic
momenl, dampings. shear deformation, and axial forque
in the same model, which has § degres of lrcedom per
node. [L docs not include axial force bul the extension s
straightforward, using the same scheme. The finile elements
developed in Lhis study can be used in the analysis and
design of any lype of multipte rotor bearing system. To
show the accuracy of Lthe models, numerical examples are

demonstrated.

. Modetling

A typical rotor bearing system is composcd of shalts,
disks, and bearings. In this study, linile clements of a
high speed rolating shaft, an unbalanced dssk, and a fluid
film journal bearing are devcloped. The common way to
formulate finite element cquations is through vanational
metheds such as Rayleigh-Ritz method, weighted residual
metheds such as Galerkin's method, and Lhe least square

methods. In this study, Galerkin's finite clement method
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15 used.

2.1 High speed shaft Element

Figure | shows a shaft element of length of L with the
coardinate used to describe the end point displacements
and rotlations. The shalt clement is considered to be
initially straight and the cross section is circular and
modelled as a 2-nede element. Each node has § degree of
freedom, 2 translations and 3 rotalions. Figure 2 shows
the frec body diagram, we can write the partial diflerential
equations of motion and the finite clement cquations of
motion can be derived based on Galerkin's (inite element

mcthod. Equilibriom equations in x-y plane became
SF,=pAdxv=0,(x t 4x, )~ 0, (x. 1) ()
pAD= -j; (Q,(x +4x. D —Q,(x. 1) (2)
S M, = pldxti—pl, Ax§2§ = M (x | 4x. )~ M, (x. 1)
+0,(x + dx, 1) ‘;" +0,(x 1 1) ‘;x 3
Let dx approach 10 zero, Then

pAD=Q, (4)
pli—pl, Q¢ =M, 10, (5)

In the same way, equilihcium cquations in x-2 plane and

torsion become

pAW=Q, (6)
pld —pl, Q0 =M, . +0, )
plp—Glytp oo (8)

where F and Q represent forces, M means moment, and

subscript x. y. and z are directions, p, A, [, 1, andQ rep-
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q2 (bl q7 ql0
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10 DOF per Element { 5 DOF per Node )

Figure ] High speed shaft element

Tue Journal of the Aconslical Socicty of Korea, Vol. 15. No. 4E {1996}

resent densily, cross sectional area, moment of inerlia,
polar moment of inertia, and rolaling speed, respectively,
g.w, @, and $ represent deformations and . and .« mean

didx and d’fdx? and G is shear modulus.

e

Mzix+dx)
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Qy(x+dx) Q

Ty=1pQ8

Qz(x+dx)

Se..
o

Figure 2 Free body diagram flor the shaf! elemeut

From Timochenko beam theory, shear and bending
strains in x-y plane are defined by 2, —¢ and €, and in
x-z plane are defined by w, ¢ and ¢ .. Then from the

stress strain relationship we can write

O x, N=RACGT (x, )=kAG(v ., —O) )
O, x, D= RAG {10 , +9) (10}
M,y £) - ElAlx 1) = EI0 {11
MAx, D=Fl¢, (12)

where E is Young's modulus, £ is shear conslanl, A and
I mcan shear and bending strans, respeclively, From

cgquations {4) to (12),

pAr=kAG (0 .~ D (13
pAw = kAG w1 @) (14)
pl—ply Q4 = E10 ,, +kAG (0 ,— ) {15)
pId —pl, Q0= EI§ o +kAG(w  — ) (6)

I’hﬂ-&l _:(;]ﬂ¢..vr {l?)
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Equations {13) to (17) are Lhe strong forms of the
cquations of tnolions. From Lhe strong forms, we can
form the weak forms muliplying the strong forms by
weight or trial functions, 8;, 7= 1, 7, 3, 4, 5, and parfial

integrating through the element.
pA ["(sI 9 4+S,10)dx +pl ["(S_. 0 +5.4)dx
J0 Ju

+pl, ["S,  dx+pl,Q [‘ (S, 0—5,8)dx

Jo Ji
+EI ["(s,, 05+ Se o6 dx +GI, [" S5 xth.y dx

Ji Jo
+kAG f" [(8 = SHo ,— 0+ (S, , +S)Hw, x +3)|dx

Jo

=SULQL, ) +S,(L)QAL D S (LML, D +SADAM (L. O
5L ML, )~ 5,010, (0, ) S, (00,0, 1) - S; (0,10, 1)
— S5 0IM, {0, 1)~ Ss(0) M, (0. 2) (18)

Now we need to discrelize the struture to gel solutions
which can be expressed as a linear combination of shape

Junctions and nodal displaccments.

vilx, =[N q(th (19
w (x, y={N, g} (20)
0" (x, =Nl ql2)} (21)
#r(x, ) =[Nyl q(th (22)
P x, =[N, [1g(t)} (23)
where

INJ={N, 00 N: O N, 0 0 N, 0]
[Nol={0 &, —N; 00 0 N, -N, 0 0]
[Na1=IN, 00 N, 0 Ny 00 N, 0f
[N, =10 Ny =N, 00 0 N, =N, 0 0]
INA=[0 000 N OO DO N

where N; and —’V, are shape functions, swperscripl 2 means
discretized value. Shape functions developed by Nelson(3)
were used (see Appendix), though any kind of good shape
functions can be used.,

For isoparametric elements, the same shape functions

arc used to discretize the weight or trial functions.

St=ISUNIT SF_ =1S][R.)" (24)
SE=(SUNT Sk =1SNB) (25)
SY-ISTNGT St =SB} (26)
Sy=ISUNGT 82 =LSI18,)7 Qn
STAS)NGTT SE =S 8,I7 (28)
where

[SI=1s; 83 83 S¢ S5 S S7 Sk So Sigl
[Bel=d/dx[N), k=v, w, 0, 8, 9

Subsitituting equations {19) lo (28) inlo cquation (18)
and factoring oul the constant matnix [S|, then we et
finile clement equalions fo motion for the clement as

follows

I“J]m{q}_lecl‘q}+[Kieqlq}__{R}m (29)

when we include the damping term, then Lhe (inite

clement equation becomes

M), (gt HICI e +IKE (g1 =t RY, (30)
where

o A 1. Lo
| M}, =pd Jn NN, dx +pi .[., NINydx tpl, .[. NIN,dx

(Cl,={CI-21G]

Logr o
[G= [0 Ny Ny =N Nodx
(K]

= Fi [’ B! B, dx +kAG [" B'B,dx +Gl1, [" B! Bydx
Ja Jooo Ju *

INJ, INy L IByl, and B, arc 2 by 16 matrices, which ate

represented by
- | Ne
vl =y ]
.. N{)
Nl <[

-5

B,_- = N"

| 8,1 - B, 4 N,

When Lhe model is exlended to include axial load, the

equilibrium eguations in X direclion become

Y F, = pAdau=0dx +4x, D=0, x, D) 1)
- l
pAU= Q. HAx D=0, (0 1) (32)
T M, = pladxp =M (x +4x, 1)~ M (x, 1) (33)
- |
;;!»;b="dx" (M (x b Ax, 1) — M (x, 1)) (34)
Then,
plie=Elu o (35)

pIntp =Gloh, ux (36)
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Adding equation (36) 10 the equilibrinms of tirc system,
the finite clement cquations will be casily formulated in

the same way.

2.2 Unbalance disk element

A sufficicntly suff disk can be idecalized as rigid. In this
study, the disk is assumed (o be this and very sUlf. Figure
3 shows a typical unbalanced ngid disk, with mass #4,
inerlia moment J;, and polar inertia moment /. The
(x, ¥. 2) coordinale is an inertia reference wilh the x axis
coinciding with the undeformed center hine of the shall
clement. The {#,, 72, 23} triad ts o rotating body Nixed rel-
crence with its nl coincedent with x axis, The {#2), 2., »y)
triad rotates at @ umlorm rale £2 aboul x axis. Point Oas
geomeltrical cenler, point G is the center ol mass, and ¢
represents the cccentricity. Then (he force due to

unbalanced mass, F, can be wrillen as

», I { Vocos82t - z.sin2f

» Fn.’y = T
Fe- {F,,-.- } mi2 L{ mh yosinf2t tz.cosQf

F,, and F,, are the Torees due 1o unbaianced mass i ¥
and z directions, ¥, and 2z, are (he mass cenler

cecentrictics of the disk in v and 2 direclions al (=4},
X n2
] Qt

‘ig /

\E
\n3
r
ql
¢S5
q2
q4

oo

Figure 3 Unbalance disk element
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From the cquilibrium,

SF,=myy =P +mQ (y.cos2{ —z,5in Q1 (37)
i =myz=, 1m0 (v.cosQl —z,5in Q1 {38)
VoA, = 1,,5 FE -—-.f,,m‘é 39)
VML lr,r(.; = l,,(r)li (40)
VM, =T 1)

Then, the cquilibrium ¢gualions are

My Y Py by {42)
My - P b, 4
LoV LQ4=0 (42)
Jb - 1,020 =0 (45)
1T, (46)

P, and P, are applicd forees in v and 2 directions, 77, 1s
the appbed lorgue.

The vigid disk clement has § DO 2 translations and 3
rolations, as shown in Figure 3. Then from Lhe equilib-

riun, the imte ¢lement equation can be representled as

[Mltqe tlCT g =1 b (a7

where

(Ml={0 0 7, 0 0

ISI=70 0 0 —1,0

2.3 Fluid film journal bearing element

For the modelting of hearings for fatcal motion, the
cight hearing coclticienl model a8 shown in Figuee 4 s
used and any inectial elfects are assumed to be negligible.
The bearing cocflicienls can be approximaled based on
the scheme of Chapler 6 in relerence[l 1] or can be
adapled rom the bearing design handbook writlen by
Lund|8}]. For the torsional motion, damping cocflicients
can he approximaled using the Peltloft’s law, which is
¢slablished 10 explain the phenomenon of bearing friction,

The [rictin torque M7 is
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4Nn2_r]1

0c {48)

M=n
where n is viscosily, » is radivs of the journal, ¢ is radial
clearance, { is bearing lenglh, and N is rpm. The inertial
cffect and torsiomal stiffness are assumed to be neghgible.

Then the equivalent torsional damptng hecomes

C 0 =M, (49)
M, ANT ¥ !

C = . = L7, [‘ ) T PO 50

=g flg v, L, )=y 60c (50)

where £2 is rotational speed.

ql

Figure 4.

In finite element analysis, cach journal bearing can be
modelled by using a set of spring and dash pot at the
journal center, as a poinl element with 3 degrees of freedom,
two translations and on¢ rotation as shown in Figure 4.
Then finite element equations for the bearing ¢lement

become

IC} gt +IK gt =t Fy} (1)

where

C,, C, 0
(Cl=|C, C. ©
0 Ct
K, K, O
(Kl=|K., K. o]
0 0 0
e
at=14q,
‘}s
/0
{Q}=‘fh]
qs
£
Hpt= S
I

where { f3} s bearing force veclor. in expanded form,
Muid film journal bearing also can be idealized by two or
three sets of springs and dash pots al the end points of
the journal, or the three poinls localed equidisiantly
along the journal axis respectively.

2.4 System equations
The [inite element equalions of motion of the complete

system can be writlen as
IMItqHIC) ig ) +IK I tgy =t f) (52)

whete [M], [C], and [ K] arc thc mass, damping including
gyroscopic moment, and slifiness matrices of the system
obtained by assemblying the element matrices. Due to Lhe
bearing coclficients, (K| and [C] may be neilher sym-
melric nor skew symjmetric, but they are highly banded
in pencral.

Generally speaking, dynamic problems can be classilicd
by two broad classes. In one, we ask for the dynamic
responses with time, under prescribed loads, impulses, or
ground accelerations, In the other, we ask for the
cigenvalucs of 1he governing syslem equations which tell
us the stability of the system, natural frequencies, and the
corresponding mode shapes. In rolordynamics, eigenvalues

are found in the form
x=A+iw {53)

where o is the whirl speed. A and w are real. Logarithm

decrement, &, is defined as

. —2mA
a:
w

(54)
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Il. Dynamic responses

Equation {52) is a typical form of the system e¢quitions
in dynamic problems. Since the order of the coefficient
matrices |[M | [Cl, and [K] s large in finite element
analysis. the precedure for Lhe solution of the system
cquations can hc very expensive unless the spocial
charatenstics of the systme maltrices are taken advantage
of. The solution prodedures are considered as two
methods, direct integration and modal method or mode
superposiion method. In dircel integration, Lhe equalions
are integrafed uwsing s numerical step by slep procedure.
The term direct means lthat no transformation ol the
cquations inlo diflerent fomms is performed prior to Lhe
numernical integralion. In modal method or mode super-
position mecthod, matural frequencies and mode shapes
are extracled by solving eigenvalue problems and the
dynamtc responses are expressed as (he sum of normal
modcs in appropriale porlions. Systems Lhal are subjected
to arbilrary loads become extremely difficult to analyze in
the physical domaim, These difficullics can be avoided
using modal method n modal or natural domain.

Dircct integration equaltions are cither explicit or
implicit. Explicit methodes find the responses at time
+47 by use ol the ecquattons of motion writlen a1l Ume £,
while implecit methods find the responses at # +4¢ from
the equations of motion written atl time £+ 4f. Usually,
explicit methods atllow a small time slep bul produce
equalions that are cheap 1o solve, while implicil methods
allow a karge lime step but produce equalions Lhat are
cxpensive to solve. Lise of different values of lime step in
different parts is also possible. Most explicit methods are
conditionally stable. Most unconditionally stable methods
are implicit. In voconditionally stable methods, (he size of
lime step is decided by accuracy rather than stability,
Many algonthms for dynamic responses are abailable in
text books [9, 10]. In 1959, Newmark generalized cerfain
dircct numerical infegrations Lhat had been used up lo
that ttme, which s slill a popular method for dynamic
responses. Oflen malhematicans recommend the fourth
order Runge-Kutta methed. In this study, 10 solve the
system cquations, Mewmark s method is used.

s method is based on the assumption

0.1+41:df+4.1+ﬁ(d”3&1+4r (55)
‘..’1+.11:;31+41+Ydf '.ﬁ;r+,1r (56)
dioy T=q +d0q,+0.5(4T) (124 (57

The Joutrnat of the Acoustical Society of Korea, Vol. 15. No. 4E (1996)

g =g, + 410 =Yg, (58)

f# and ¥ are the numbers (hat the analysl can choose.
Subslituting cquations {55) to (58} into equation (52), and

rearranging lor . then
UMIAYALCIVRUD? gt =t e g = K1dr s 50 (59)

The algorithm operates as lollows. We starts at £ =10.
initial condiions prescribes ¢, and én. From these and
cqualion (32), r..;., can be tound. Then cgquations {55) to (58)
are solved for ¢4, and ¢4, and cquation (59) is solved for
.:;.‘,,. Wilh 74, r}‘,,. and (}J,. we can find ¢, 4, é;df. and ;,;“,.
in the same way, and so on. I 4¢ is not changed, 1he
coelMicient matrix needs to be reduced only once. A good
choice of parameters for an implicit method that is
unconditionally stable in lincar problems is f=0.25 and ¥
=0.5. Then the method is also called the constant average
acceleration method or the trapezoidal method.

Generadly, modal and miplicit direct methods are more
cconomical in inerGial problems, while explicit direct
methods are more cconomical in shock foxding and wave
propagation problems. In lincar problems, modal method
is labored il only a few modes are needed 1o describe the
response. With mode  superposition, loading  historics
after the first are analyzed cheaply, but with direct inte-
pralion, especially the explicit methods, the second and
subsequent Joad histories do nol reduce cost as greatly,
Madal method is suilable if the nonlincarities are absent
or small and confined to a few regions of the slruclure,
The cxplicit approach is oflen best for nonlinear problems.
An cfficient and versalile compuler program should be
able Lo chunge aulomalically from an explicit method at
an carby time, where the time step is small 1o follow tran-
sienl, to an implicit method at a later tme, where a large

time slep is sutticiendly accurate.

V. Results

To conlirm the results of this study, simple examples
are employed as shown in Figures 5 and o. Figures 7 and
& show 1he wiirling and 1orstonal responses al the
lacation of the disk for the ngid bearing model. Figures 9
shows (he whirling respanses at the localion of the disk
for the flexible bearing model. Solid lines represent
responses from the method of this study, and cirele points
represent  the analytical solutions for the steady state

responses. Since (he resulls apree well, the basic pro-
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cedure is confirmed by such correlation, T T e T

. , oL o Analytic :

In this study. a fnile element model of a rotor bearing o — FEM !
system is presented. The major advantage ol the model is E

that it includes tae effcects of rolary inertia, pyroscopic
momenl, internal and viscous dampings, and axial lorque

in the same model. The developed computer program

o
gives accurate predictions and will he a valuable tool for = © —+ 4
the analysis and design of a high speed rotor bearing sys-
tem.
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