• Title/Summary/Keyword: Rotatory

Search Result 204, Processing Time 0.023 seconds

The development of conditioning monitor system for bearing (Bearing의 이상진단을 위한 모니터링 시스템 개발)

  • 오재응;전의식;김인수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.445-450
    • /
    • 1989
  • In this study, a variety of method to diagnose a fault of rotatory machine is suggested. Apprehending the physical meaning of each techniques, computer simulation is performed. The result from this computer simulation and the signal of the faulted ball bearing is studied from all its aspect. It is found that this conditioning monitor system is effective.

  • PDF

Free Vibrations of Timoshenko Beam with Constant Volume (일정체적 Timoshenko 보의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Yoon, Hee-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.223-233
    • /
    • 2012
  • This paper deals with free vibrations of the tapered Timoshenko beam with constant volume, in which both the rotatory inertia and shear deformation are included. The cross section of the tapered beam is chosen as the regular polygon cross section whose depth is varied with the parabolic function. The ordinary differential equations governing free vibrations of such beam are derived based on the Timoshenko beam theory by decomposing the displacements. Governing equations are solved for determining the natural frequencies corresponding with their mode shapes. In the numerical examples, three end constraints of the hinged-hinged, hinged-clamped and clamped-clamped ends are considered. The effects of various beam parameters on natural frequencies are extensively discussed. The mode shapes of both the deflections and stress resultants are presented, in which the composing rates due to bending rotation and shear deformation are determined.

A Study on the Fault Detection of Roller Bearings in the Auto-Transmission (자동변속기에서의 롤러 베어링 결함 검출에 관한 연구)

  • Park, Ki-Ho;Jung, Sang-Jin;Wee, Hyuk;Lee, Gook-Sun;Cho, Seong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.84-88
    • /
    • 2008
  • The roller bearings play an important role not only sustain radial or axial load of system, but carry out a rotatory movement as a various operating conditions. They happen that incipient faults which were caused by excessive load, manufacturing or assembling process's errors and many other reasons are created. The bearing faults make noise and vibration by a continuous collision of rotatory components, which can lower the quality and stability of auto-transmission. Therefore, it is important to detect the early fault as soon as possible. This paper presents a detecting method for the improvement in quality by developing the program which can be used to analyze and predict the vibrational characteristics caused by roller bearing faults. We completed development of the inspection system of vibration by appling the most efficient detecting methods and verified the system's reliability through experiments.

  • PDF

Free Vibrations of Clamped Circular Arches with Linear Variable Cross-Section (1차원 변화단면을 갖는 양단고정 원호아치의 자유진동 해석)

  • Lee, Byoung Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 1989
  • The main purpose of the present paper is to present both the fundamental frequency and some higher free vibration frequencies for circular arches with variable section, in which rotatory inertia is included. The differential equations are derived for the in-plan free vibration of elastic circular arches with variable section. These equations were solved numerically for the linear variable circular cross-section with clamped-clamped end constraint. As the numerical results, the four lowest nondimensional natural frequencies presented as functions of the nondimensional system parameters : the end moment of inertia to crown moment of inertia ratio, the slenderness ratio, and the opening angle. The effect of rotatory inertia on the nondimensional natural frequency is also reported.

  • PDF

Energy Flow Finite Element Analysis(EFFEA) of Coplanar Coupled Mindlin Plates (동일 평면상에서 연성된 Mindlin 판 구조물의 에너지흐름유한요소해석)

  • Park, Young-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.307-314
    • /
    • 2016
  • Energy flow analysis(EFA) is a representative method that can predict the statistical energetics of structures at high frequencies. Generally, as the frequency increases, the shear distortion and rotatory inertia effects in the out-of-plane motion of beams or plates become important. Therefore, to predict the out-of-plane energetics of coupled structures in the high frequency range, the energy flow analyses of Timoshenko beam and Mindlin plate are required. Unlike the energy flow model of Kirchhoff plate, the energy flow model of Mindlin plate is composed of three kinds of energy governing equations(out-of-plane shear wave, bending dominant flexural wave, and shear dominant flexural wave). This paper performed the energy flow finite element analysis(EFFEA) of coplanar coupled Mindlin plates. For EFFEA of coplanar coupled Mindlin plates, the energy flow finite element formulation of out-of-plane energetics in the Mindlin plate was performed. The general EFFEA program was implemented by MATLAB® language. For the verification of EFFEA of Mindlin plate, the various numerical applications were done successfully.

Planar Free Vibrations of Catenary Arcs (현수 곡선부재의 면내 자유진동 해석)

  • Lee, Byoung Koo;Oh, Sang Jin;Suh, Ju Suhk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.19-28
    • /
    • 1990
  • The main purpose of this paper is to present both fundamental and some higher natural frequencies of catenary arcs. The differential equations governing planar free vibrations for these arcs are derived, in which the rotatory inertia is included, as non-dimensional forms and solved numerically to obtain frequencies and mode shapes. The hinged-hinged and clamped-clamped end constraints are applied in numerical examples. The lowest four natural frequencies are reported as the functions of non -dimensional system parameters; the slenderness ratio and the rise to span length ratio. The effects of rotatory inertia on natural frequencies are reported and some typical mode shapes are also presented.

  • PDF

Free Vibration of Stepped Horizontally Curved Members Supported by Two-Parameter Elastic Foundation (두 변수 탄성지반으로 지지된 불연속 변단면 수평 곡선부재의 자유진동)

  • Lee, Byoung Koo;Lee, Tae Eun;Ahn, Dae Soon;Kim, Mu Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.651-659
    • /
    • 2001
  • The main purpose of this paper is to present an analytical method for free vibration of stepped horizontally curved members on two-parameter elastic foundation. The ordinary differential equations governing the free vibration of such beams are derived as non-dimensional forms including the effects of rotatory inertia and shear deformation. The governing equations are solved numerically for the circular, parabolic, sinusoidal and elliptic curved beams with hinged-hinged, hinged-clamped and clamped-clamped end constraints. As the numerical results, the lowest four natural frequency parameters are presented as the functions of various non-dimensional system parameters. Also the typical mode shapes are presented.

  • PDF

A Study on the Fault Detection of Auto-transmission Using the Vibrational Characteristics of Roller Bearings (롤러 베어링의 진동특성을 이용한 자동변속기 결함 검출에 관한 연구)

  • Park, Ki-Ho;Jung, Sang-Jin;Wee, Hyuk;Lee, Gook-Sun;Cho, Seong-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.268-273
    • /
    • 2009
  • The roller bearings play an important role not only sustain radial or axial load of system, but carry out a rotatory movement as a various operating conditions. They happen that incipient faults which were caused by excessive load, manufacturing or assembling process's errors and many other reasons are created. The bearing faults make noise and vibration by a continuous collision of rotatory components, which can lower the quality and stability of auto-transmission. Therefore, it is important to detect the early fault as soon as possible. This paper presents a detecting method for the improvement in quality by developing the program which can be used to analyze and predict the vibrational characteristics caused by roller bearing faults. We completed development of the inspection system of vibration by applying the most efficient detecting methods and verified the system's reliability through experiments.

Out-of-Plane Vibration Analysis of Curved Beams Considering Shear Deformation Using DQM (전단변형이론 및 미분구적법을 이용한 곡선보의 면외 진동해석)

  • Kang, Ki-Jun;Kim, Jang-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.417-425
    • /
    • 2007
  • The differential quadrature method(DQM) is applied to computation of eigenvalues of the equations of motion governing the free out-of-plane vibration for circular curved beams including the effects of rotatory inertia and transverse shearing deformation. Fundamental frequencies are calculated for the members with clamped-clamped end conditions and various opening angles. The results are compared with exact solutions or numerical solutions by other methods for cases in which they are available. The DQM provides good accuracy even when only a limited number of grid points is used.