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Out-of-Plane Vibration Analysis of Curved Beams Considering Shear
Deformation Using DQM
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Abstract

The differential quadrature method(DQM) is applied to computation of eigenvalues of the equations of motion governing the free
out-of-plane vibration for circular curved beams including the effects of rotatory inertia and transverse shearing deformation.
Fundamental frequencies are calculated for the members with clamped-clamped end conditions and various opening angles. The
results are compared with exact solutions or numerical solutions by other methods for cases in which they are available. The DQM
provides good accuracy even when only a limited number of grid points is used.
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1. Introduction during the construction period described by Kang

and Yo0o0(1994). Owing to their importance in many

Curved beams are used frequently in highway
bridge structures. Curved alignments of highway
bridges and interchanges have been necessary for
the smooth dissemination of traffic in large urban
areas. The construction cost and time of curved
beams associated with the substructure have been
found to be significantly reduced by the use of
curved beams. Furthermore, the construction time
is a factor of immense importance in the selection
of a suitable structural system where the con-

struction site needs to be used for other operations

fields of technology and engineering, the vibration
behavior of elastic curved beams has been the sub-
ject of a large number of investigations. Despite of
a number of advantages, a curved member behaves
in an extremely complex manner as compared to a
straight member, and practicing engineers have often
been discouraged by the complexity because of the
initial curvature. However, the mathematical diffi-
culties associated with curved members have been
largely overcome with the application of digital com-—

puters and the development of numerical methods.
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The early investigators into the in-plane vibration
of Hoppe(1871) and Love(1944).
Love(1944) improved on Hoppe's theory by allowing

rings were
for stretching of the ring. Lamb(1888) investigated
the statics of a curved bar with various boundary
conditions and the dynamics of an incomplete
free-free ring of small curvature. Den Hartog(1928)
used the Rayleigh-Ritz method for finding the low-
est natural frequency of circular arcs with clamped
ends, and his work was extended by Volterra and
Morell(1961) for the vibration of arches having cen-
ter lines in the form of cycloids, catenaries, or
parabolas. Archer(1960) carried out for a mathe-
study of the

brations of an incomplete circular ring of small

matical in-plane inextensional vi-
cross section with the basic equations of motion as
given in Love(1944) and gave a prescribed time-de-
pendent displacement at the other end for the case
of clamped ends. Out-of-plane vibrations of com-
plete and incomplete rings have been the subject of
interest for several research workers. QOjalvo(1962)
obtained the equations governing three~dimensional
linear motions of elastic rings and the results for
the generalized loadings and viscous damping using
classical beam theory assumptions. The natural fre-
quencies of elastic beams were usually calculated by
the classical beam theory in which the effects of ro-
tatory inertia and transverse shearing deformation
were not considered. However, the numerical results
obtained by the theory can not present accurate
values for the beams of considerably thick cross
et al.(1982)

out-of-plane vibration of circular beams based on

sections. Irie have analyzed the
Bresse-Timoshenko beam theory in which the effects
of rotatory inertia and transverse shearing deforma-
tion are taken into account.

Recently, Lee and Oh(1996) have developed an
approximate method to obtain the natural frequen-
cies of the out of plane vibration of circular curved
beams using the Runge-Kutta and Regula-Falsi
methods, and Kim and Park(2006) have proposed a
new efficient 2-noded hybrid-mixed element for
curved beam vibrations having the uniform and
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non-uniform cross sections.

A rather efficient alternate procedure for the sol-
ution of partial differential equations is the method
of differential quadrature which was introduced by
Bellman and Casti(1971). This simple direct techni-
que can be applied to a large number of cases to
circumvent the difficulties of programming complex
algorithms for the computer, as well as excessive
use of storage. This method is used in the present
work to analyze the out-of-plane vibration of curved
beams based on the classical beam theory and
Bresse-Timoshenko beam theory. The lowest fre-
quency parameters are calculated for the member of
square and circular cross sections under clamp-
ed-clamped boundary conditions with various open-
ing angles. The DQM results are compared with ex-
act solutions by Ojalvo(1962) or transfer matrix
solutions by Irie et al.(1982).

2. Governing Differential Equations

The uniform curved beam considered is shown in
Fig. 1. A point on the centroidal axis is defined by
the angle @, measured from the left support. The
tangential and radial displacements of the arch axis
are p and w, respectively. Here, # is the dis-
placement at right angles to the plane of the arch,
R is the radius of the centroidal axis, and £ is the
angular rotation of a cross section of the principal
axes about the tangential axis. These displacements
in the
indicated. A mathematical study of the out-of-plane

are considered to be positive directions
vibration of the curved beam of a small cross sec-
tion is carried out starting with the basic equations
of motion as given by Qjalvo(1962).

If the effects of rotatory inertia and transverse
shearing deformation are neglected, the differential
equation governing the coupled twist-bending vi-
bration of a thin curved beam can be written as
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Fig. 1 Coordinate system for curved beam
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in which each prime denotes one differentiation
with respect to the dimensionless distance coor-
dinate, X, defined as

ng% (5)

Here, £ is the stiffness parameter GJ/EIL,, G is
the shear modulus, J is the torsion constant of the
cross section, I, is the area moment of inertia of
the cross section, E is the Young's modulus of
elasticity for the material of the beam, m is the
mass per unit length, 0, is the opening angle, and
A is the dimensionless parameter, related to the
circular frequency . The moment-displacement re-

lation can be expressed as

22 R

Gl M———ZL(RB u'’) (6)

If the beam is clamped at §=0 and =04, then

the boundary conditions take the form
B(0) =u(0)= o (0) = B(8y) = u(by) = v’ () =0(7)

The differential equations governing the out-of-
plane vibration of a circular beam based on the
Bresse-Timoshenko beam theory, in which both the
rotatory inertia and the shear deformation are tak-

en into account, were given by Irie et al.(1982) as
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Here, x is the shear correction factor depending
on the shape of the cross section, v is the
Poisson’s ratio of the beam, and ¢ is the slope of
the displacement curve due to pure bending. For
simplicity of the analysis, the following dimension-
less variables have been introduced:

_ _ o _mR'e?
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where s, and s, are the slenderness ratios, A is
the cross sectional area, and p is the dimensionless
parameter, related to the circular frequency w.

If the beam is clamped at =0 and 8=10,, then

the boundary conditions take the form

u(0) = ¢(0) = B(0) = u( ) = A ) =B(6p) =0 (12)
3. Differential Quadrature Method(DQM)

In many cases, moderately accurate solutions
which can be calculated rapidly are desired at a few
points in the respective physical domains. These

solutions have traditionally been obtained by the

standard finite difference and finite element meth-
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ods have to be computed based on a large number
of points. The mentioned methods depend strongly
on the nature and refinement of the discretization
of the domain. However, in order to get results
even with only a limited amount of accuracy at or
near a point of interest for a complicated problem,
solutions often have to be computed based on a
large number of surrounding points since the accu-
racy and stability of the aforementioned classical
methods depend strongly on the nature and refine-
ment scheme adopted to discretize the domain.
Consequently, computational efforts are often con-
siderable for these standard methods. In order to
overcome the aforementioned complexities, an effi-
cient procedure called differential quadrature meth-
od was introduced by Bellman and Casti(1971). By
formulating the quadrature rule for a derivative as
an analogous extension of quadrature for integrals
in their introductory paper, they proposed the dif-
ferential quadrature method as a new technique for
the numerical solution of initial value problems of
ordinary and partial differential equations. It was
applied for the first time to static analysis of struc-
tural components by Jang et al.(1989). Kukreti et
al.(1992) calculated the fundamental frequencies of
tapered plates, and Farsa et al.(1993) applied the
method to calculate the fundamental frequencies of
general anisotropic and laminated plates. In another
development, the quadrature method was introduced
in lubrication mechanics by Malik and Bert(1994).
The versatility of the DQM to engineering analysis
in general and to structural analysis in particular is
becoming increasingly evident by the related pub-
Recently, Kang and
Han(1998) applied the method to the static analy-

sis of circular curved beams using classical and

lications of recent vyears.

shear deformable beam theories, and Kang and
Kim(2002) studied the buckling and the extensional
vibration analysis of curved beams using the DQM.
From a mathematical point of view, the applica-
tion of the differential quadrature method to a par-
tial differential equation can be expressed as fol-

lows:
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L{fx)},= ElWijf(xj) for 4,;=1,2,...,N (13)
~
where L denotes a differential operator, x; are
the discrete points considered in the domain, Ax;)

are the function values at these points, W; are the
weighting coefficients attached to these function
values, and N denotes the number of discrete points
in the domain. This equation, thus, can be ex-
pressed as the derivatives of a function at a dis-
crete point in terms of the function values at all
discrete points in the variable domain.

The general form of the function Ax) is taken as

flx)=x*"1for k=1,2,...,N (14)

If the differential operator L represents an z®

derivative, then

Y k—n—1
¥ Witk = (k= D(k= 2+ (k— )t ™" for

i, k=1,2, ..., N (15)

This expression represents N sets of N linear al-
gebraic equations, giving a unique solution for the
weighting coefficients, W, since the coefficient ma-
trix is a Vandermonde matrix which always has an

inverse as described by Hamming(1973).
4. Application
Applying the DQM to equations (3) and (4) gives
1 & 2 Ap o p—_pltk
6/(1) ];Dijﬁj+ 9% ];BZIB/_I_BZ /1 R U; (16)

ég_;iBi;‘u;’ZTﬁ(ﬂi“k_gg_ ]ﬁBi;ﬂj) a7
where B; and Dj; are the weighting coefficients
for the second- and fourth-order derivatives along
the dimensionless axis, respectively.
The boundary conditions for clamped ends, given
by equation (7), can be expressed in differential

quadrature form as follows:



B1=0 and «;=0 at X=90 (18)
By=0 and uy=0 at X=1 (19)
N
];A2ju,-=0 at X:0+8 (20)
N
]ZIA(NAUJ‘Z{;‘:O at X=1-9¢ (21)

where A, are the weighting coefficients for the
first-order derivatives along the dimensionless axis,
and ¢ denotes a very small dimensionless distance
measured from the boundary ends of the member.

An intriguing issue in the quadrature solutions is
the implementation of the boundary conditions, par-
ticularly in boundary value problems described by
systems of higher than second order. Before solving
these equations, one invokes the boundary con-
ditions replacing the boundary-point equations by
the DQ

conditions. This happens to be a rather simple mat-

analog equations of the

boundary
ter with first- or second-order differential equations
irrespective of domain dimensions and whether the
Dirichlet
Neumann type or possibly of the mixed type.

boundary conditions are the

and/or
However, with the higher-order differential equa-
tions, implementation of the boundary conditions is

not straightforward and needs careful consideration.

Fig. 2 Quadrature grid point for curved beam
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The DQ analog of the two conditions at a boundary
are written for the boundary points and their ad-
jacent §-points. The quadrature gird of a domain
with the adjacent §-points are shown in Fig. 2.

In the quadrature analog equations of the boun-
dary conditions, the weighting coefficients should be
the ones associated with the boundary points.
Inasmuch as the boundary condition analog equa-
tions simply replace the quadrature analog of the
governing equations at the boundary and adjacent
points, the need for using the adjacent points suffi-
clently close to the boundary becomes somewhat
ambiguous. The necessity of having the adjacent
points close to the boundary points arises in prob-
lems where, in the process of the solution of the
quadrature analog equations, the boundary-points
values of the function are eliminated. This is ac-
tually the case with eigenvalue problems in which
elimination of the function values even though the
eigenvalue solution may have converged. The ¢
technique offers an adequate way for applying the
double boundary conditions of beam problems and
was applied quite successfully. However, an arbitra-
riness in the choice of the ¢§-value becomes appa-
rent in the actual implementation of the boundary
conditions. Thus, while the ¢-value can not be
large for an acceptable solution accuracy(possibly
not greater than 0.001 in dimensionless value),
with too small ¢-value, the solution begins to
oscillate.

Applying the DQM to equations (8), (9), and

(10) gives

% Si_R?O zBuu +p2J]§ u;

+xﬁsi—;— 2 A=0 22)

2—3%)@:0 (23)
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Table 1 Fundamental frequency parameters, p=(mR*w?/ EI)"?, for out-of-plane vibration of clamped-clamped

beams with square cross sections using Bresse-Timoshenko beam theory including a range of grid point N; v =

0.3 and §=1x1p °

s = &y Irie et al. N
o (degrees) (1982) 7 9 11 13 15
60 16.74 16.82 16.74 16.74 16.74 16.74
20 120 4.282 4.332 4,280 4.283 4.283 4.283
180 1.776 1.817 1.774 1.777 1.777 1.777
60 19.40 19.56 19.40 19.40 19.40 19.40
100 120 4.451 4.449 4.449 4,452 4.452 4.453
180 1.804 1.847 1.802 1.805 1.805 1.806

Table 2 Fundamental frequency parameters, p=(mR*w?/EI)"?, for out-of-plane vibration of clamped-clamped

beams with circular cross sections using Bresse-Timoshenko beam theory inciuding a range of & v=0.3,
6,=180°, and N=13
Irie et al 8
T (1982) 0.08333 1x10° 1x10™* 1x107 1x10°°
20 1.791 1.791 1.791 1.791 1.791 1.791
100 1.818 1.818 1.818 1.818 1.818 1.818

Table 3 Fundamental frequency parameters, A=(mR?/GHY?, for out-of-plane vibration of thin curved beams
with clamped ends using classical beam theory including & range of & »=0.3, 6,=180°, and N=13

é
k=GJ/EI, | Ojalvo(1962) > ~ ~ "
0.08333 1x10 1x10 1x10 1x10
1.0 1.837 2914 1.915 1.838 1.837 1.837
(145 7;_ ZN‘{[ Auh=0 (24) beams are calculated by the differential quadratl'lre
07= method(DQM), and the results are compared with

The boundary conditions for clamped ends, given
by equation (12), can be expressed in differential

quadrature form as follows:

(25)
(26)

uy=¢=5=0

uy= ¢ny=BFy=0

at X=9
at X=1

This set of equations together with the appro-
priate boundary conditions can be solved to obtain
the fundamental natural frequency for the out-

of-plane vibration of a curved beam.

5. Numerical Results and Comparisons

The fundamental frequency parameters of curved
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the solutions by other methods including the effects
of the rotatory inertia and shear deformation.
Tables 1~3 present the results of convergence
studies relative to the number of grid point N and
the parameter ¢, respectively. Table 1 shows that
the accuracy of the numerical solution increases
with increasing N and passes through a maximum.
Then, numerical instabilities arise if N becomes too
large. The optimal value for N is found to be 11 to
13 using §=1x10 ~°. Tables 2 and 3 show the sen-
sitivity of the numerical solution to the choice of ¢
using 13 grid points. From Table 2, the adjacent &
-points are not necessary for this case. Equally
space grid points give the good accuracy because

the implementation of the boundary conditions is



straightforward(the one boundary condition at a
boundary point). However, Table 3 shows that the
solution accuracy decreases due to numerical in-
stabilities if § becomes too big because the im-
plementation of the boundary conditions is not
straightforward. The two conditions at a boundary
point should be applied to the boundary point and
the adjacent &-point, respectively, as mentioned
earlier. The optimal value for ¢ is found to be
1x107° to 1x10 5,

al-and-error calculations. Therefore, all results are

which is obtained from tri-

calculated using 13 grid points and §=1x0"".
Fundamental frequency parameters, A= (mR?w?/

G)'?, for the out-of-plane vibration of thin curved
beams with clamped ends neglecting the effects of the
rotatory inertia and shear deformation are summar-
ized and compared with the results by Ojalvo(1962) in
Table 4. Engineering bounds on the stiffness parame-
ter k are established in detail by Qjalvo(1962).

The values, p=(mR4a)2/EIZ)1/2, corresponding to

the lowest natural frequencies are evaluated for the

Table 4 Fundamental frequency parameters, A=

square and circular cross sections under clamp-
ed-clamped end conditions including the effects of
the rotatory inertia and shear deformation, and nu-
merical results are compared with transfer matrix
solutions by Irie et al.(1982). The shear correction
factor x is taken to be 0.85 for the square cross
section and 0.89 for the circular cross section, and
the Poisson’s ratioc v is 0.3. The results are sum-
marized in Tables 5 and 6. As it can be seen from
Tables 4~6, the numerical results show excellent
agreement with the solutions by Ojalvo(1962) and
those by Irie et al.(1982). From Tables 5 and 6,
the frequency parameters of square cross section
beams are generally smaller than those of circular
cross section beams, and the difference between
them is very small. The higher values of s, and 6
have little effect on the fundamental natural fre-

quency parameters. However, the lower values of s,

and 4§, have a significant effect on the frequencies.

Table b Fundamental frequency parameters, p=
(mR'@*/EL)"*, for out-of-plane vibration of cla-
mped-clamped beams with circular cross sections
using Bresse-Timoshenko beam theory: v=0.3

(mR*®?*/GD'?, for out-of-plane vibration of thin Irie et al.
curved beams with clamped ends using classical Sx 78 O (degrees) (1982) DQM
beam theory 60 16.88 16.89
6, b= GJJEL A= (mR' &*/ G 20 120 4.309 4.309
(degrees) Ojalvo(1962) DQM 180 1.791 1.791
0.005 6.860 6.860 60 19.45 19.45
0.2 3.655 3.655 100 120 4.473 4.473
180° 0.5 2.517 2.517 180 1.818 1.818
1.0 1.837 1.837
1625 1461 1,460 'I'(ab}l:4 ?/Ejt;?/ga;nematl :(reclquencYb p?rameftelrs, pd=
0.005 1817 1.818 cI;”mpCeod b(zaam’s O\/rvi(t)klmJ :qquaenec\;losr: Izgc:orcwsarzz(iang
0.2 1.283 1.283 Bresse-Timoshenko beam theory; v=0.3
0
o e [ P [ Y e
1.625 0.6277 0.6277 60 16.74 16.74
0.005 0.6738 0.6738 20 120 4.282 4,283
0.2 0.5788 0.5788 180 1.776 1.777
360° 0.5 0.5030 0.5030 60 19.40 19.40
1.0 0.4382 0.4382 100 120 4,451 4.452
1.625 0.3912 0.3912 180 1.804 1.805
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Table 7 Fundamental frequency parameters, p=
(mR*w*/EL)"?, for out-of-plane vibration of clamped-

clamped beams with square cross sections using both
classical beam theory and Bresse-Timoshenko beam

theory: v=0.3 and k=1
Bresse-Timoshenko beam
&y Classical beam theory (DQM)
(degrees) theory(DQM) s, = 20 5. = 100
180° 1.837 1.777 1.805

VETAEE o] 48 TMR) Hel AFs

Table 7 shows fundamental frequency parameters,
p=(mR'®*/EI)"?, obtained by the DQM for
clamped-clamped ends with square cross section
beams neglecting both rotatory inertia and shear
deformation(classical beam theory) or including both
rotatory inertia and shear deformation(Bresse-
Timoshenko beam theory). In general, as the slen-
derness ratios of beam cross sections become small-

er, the frequencies become more significant.

6. Conclusions

The differential quadrature method(DQM) was
used to compute the eigenvalues of the equations of
motion governing the free out-of-plane vibration of
curved beams based on the classical beam theory
and Bresse-Timoshenko beam theory. The lowest
frequency parameters were calculated for the mem-
ber of square and circular cross sections under
clamped-clamped boundary conditions and various
opening angles. The present method gives results
which agree very well with the solutions by other
methods for the cases treated while requiring only a

limited number of grid points.
Nomenclature
The following symbols are used in this paper:

A beam cross-sectional area
A ; weighting coefficients for the first derivatives

B, weighting coefficients for the second de-

rivatives

424 SA=MMTATEI =2E R20H M45(2007.8)
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D; weighting coefficients for the
rivatives

E modulus of elasticity

Ax) general function

Ax;) function value at point x;

G shear modulus

I, I, area moment of inertia about x-axis and

z-axis, respectively
J torsion constant
% stiffness parameter
I differential operator
M bending moment
m mass per unit length
N number of discrete points

p fundamental frequency parameters,
(mR4(l)2/EIz)l/2

R radius of centroidal axis
Sy, S, slenderness ratios and
I, I,

respectively
u radial displacement in x-direction
v displacements in y-direction
X dimensionless position coordinate
x; discrete point in domain
x, v, z coordinate axes, respectively
W; weighting coefficients
w tangential displacement in z-direction

A angular rotation

Jé small dimensionless distance measured from

boundary ends of member

@ angle from left support to generic point

0, opening angle of member

A? fundamental frequency parameters, mR'w?/GJ

x shear correction factor

v Poisson’s ratio

¢ slope of displacement curve due to pure bend-

ing

w circular frequency ( 7ad/s)

fourth de-



References

Archer, R. R. (1960) Small Vibration of Thin
Incomplete Circular Rings, International Journal of
Mechanical Sciences, 1, pp.45~506.

Bell, R. E., Casti, J. (1971) Differential Quadrature
and Long-term Integration, Journal of Mathema-
tical Analysis and Application, 34, pp.235~238.

Den Hartog, J. P. (1928) The Lowest Natural
Frequency of Circular Arcs, Philosophical Maga-
zine, Series 7, 5, pp.400~408.

Farsa, J., Kukreti, A. R., Bert, C. W. (1993)
Fundamental Frequency of Laminated Rectangular
Plates by Differential Quadrature Method, Interna-
tional Journal for Numerical Methods in Engine-
ering, 36, pp.2341~2356.

Hamming, R. W. (1973) Numerical Methods for
Scientists and Engineers, 944 Edition, McGraw-
Hill Book Co., New York, N. Y.

Hoppe, R. (1871) The Bending Vibration of a
Circular Ring, Crelle’s Journal of Mathematics, 73,
pp.158~170.

Irie, T., Yamada, G., Tanaka, K. (1982) Natural
Frequencies of Out-of-Plane Vibration of Arcs,
Transactions of the Americans Society of Mecha-
nical Engineers, Journal of Applied Mechanics, 49,
pp.910~913.

Jang, S. K., Bert, C. W,. Striz, A. G. (1989)
Application of Differential Quadrature to Static
Analysis of Structural Components, International
Journal for Numerical Methods in Engineering, 28,
pp.561~577.

Kang, K., Han, J. (1998) Analysis of a Curved Beam
Using Classical and Shear Deformable Beam
Theories, KSME International Journal, 12, pp.24
4~256.

Kang, K., Kim, B. (2002) In-Plane Extensional

]
BE - S

Vibration Analysis of Curved Beams Using DQM,
Journal of Korean Society of Safety, 17, pp.99~
104.

Kang, Y. J., Yoo, C. H. (1994) Thin-Walled Curved
Beams. I: Formulation of Nonlinear FEquations,
Journal of Engineering Mechanics, ASCE, 120, pp.
2072~2099.

Kim, J. G., Park, Y. K. (2006) A New Higher-Order
Hybrid-Mixed Element for Curved Beam Vibra-
tions, Journal of Computational Structural Engine-
ering Institute of Korea, 19(2), pp.151~160.

Kukreti, A. R., Farsa, J., Bert, C. W. (1992)
Fundamental Frequency Tapered Plates by Diffe-
rential Quadrature, Journal of Engineering Mecha-
nics, ASCE, 118, pp.1221~1238.

Lamb, H. (1888) On the Flexure and Vibrations of a
Curved Bar, Proceedings of the London Mathe-
matical Society, 19, pp.365~376.

Lee, B. k., Oh, S. J. (1996) Out of Plane Free
Vibrations of Circular Curved Beams, Journal of
Computational Structural Engineering Institute of
Korea, 8(1), pp.133~139.

Love, A. E. H. (1944) A Treatise of the Mathematical
Theory of Elasticity, 4™ Edition, Dover Publica-
tions, New York.

Malik, M., Bert, C. W. (1994) Differential Qua-
drature Solution for Steady State Incompressible
and Compressible Lubrication Problems, Journal of
Tribology, ASME, 116, pp.296~302.

Ojalvo, U. (1962) Coupled Twisting-Bending Vibra-
tions of Incomplete Elastic Rings, International
Journal of Mechanical Sciences, 4, pp.53~72.

Volterra, E., Morell, J. D. (1961) Lowest Natural
Frequency of Elastic Arc for Vibrations outside the
Plane of Initial Curvature, Journal of Applied
Mechanics, ASME, 28, pp.624~627.

SEMA PR EES =28 H20E H4E(2007.8) 425



