• 제목/요약/키워드: Rotational accuracy performance

Search Result 61, Processing Time 0.081 seconds

A Study on the Main Spindle Deformatin characteristics by the Tool Weight Condition (공구 중량조건에 의한 주축변위 특성연구)

  • 김종관
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.121-128
    • /
    • 1996
  • In order to examine spindle deformation characteristics that affects the performance of dynmic cutting acuracy due to tool weight variation in a experimental spindle. thermal deformation value of operrative spindle by the axial displacement and the radial run out was measured according to the rise of spindle temperature through the laps of operation time and the change of rotational speed under the tool weight variation. A qualitative summary is as follows ; 1) The results show that the tool weight affcets the spindle temperature variation in a experimental spindle. 2) Radial run out and axial displacement was measured according to the rise of the spindle temperature and the performance of dynamic cutting accuracy was affected by the tool weight variation. 3) Axial displacement is 1.3 times larger than the radial run out in a experimental spindle conditions. 4) Axial displacement is continuously elongated when the tool weight is repeatly exchanged since the spindle themal deformaion, however, when the same tool weight is used. the displacement is still constant.

  • PDF

Design and Kinematic Analysis of the Reticle Stage for Lithography Using VCM (VCM을 이용한 리소그래피용 레티클 스테이지의 설계 및 기구학적 해석)

  • Oh, Min-Taek;Kim, Mun-Su;Kim, Jung-Han
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.86-93
    • /
    • 2008
  • This paper presents a design of the reticle stage for lithography using VCM(Voice Coil Motor) and kinematic analysis. The stage has three axes for X,Y,${\theta}_z$, those actuated by three VCM's individually. The reticle stage has cross coupled relations between X,Y,${\theta}_z$ axes, and the closed solution of the forward/inverse kinematics were solved to get an accurate reference position. The reticle stage for lithography was designed for reaching both high accuracy and long stroke, which was $0.1{\mu}m$ (X,Y)/ $1{\mu}rad({\theta}_z)$ accuracies and relatively long strokes about 2mm (X,Y) and 2 degrees(${\theta}_z$). Also this research presents a rotational compensation algorithm for the precision gap sensor for the stage. Simulation results show the overall performance of the whole algorithm and the improvement quantity of the rotational compensation algorithm.

Study for the Design of Hydraulic Load Simulator (유압식 부하 시뮬레이터의 설계에 관한 연구)

  • 이성래;김형의;문의준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.44-52
    • /
    • 1994
  • Load simulator is essential to test and quality the performance of various control systems. It is good time to introduce a method to design and analyze the load simulator or since many research centers and industrial companies are trying to buy or design the load simulator. The stability, accuracy and response speed of the simulator are represented by the system parameters such as the hydraulic motor characteristics, the servovalve characteristics, supply pressure, rotational inertia, rotational spring constant, sensor and controller gains. Two design examples are shown here. A load simulator for a position control system and that for a velocity control system are designed. The goodness of the proposed method is verified by the digital computer simulations.

Design and Fabrication of CLYC-Based Rotational Modulation Collimator (RMC) System for Gamma-Ray/Neutron Dual-Particle Imager

  • Kim, Hyun Suk;Lee, Jooyub;Choi, Sanghun;Bang, Young-bong;Ye, Sung-Joon;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.112-119
    • /
    • 2021
  • Background: This work aims to develop a new imaging system based on a pulse shape discrimination-capable Cs2LiYCl6:Ce (CLYC) scintillation detector combined with the rotational modulation collimator (RMC) technique for dual-particle imaging. Materials and Methods: In this study, a CLYC-based RMC system was designed based on Monte Carlo simulations, and a prototype was fabricated. Therein, a rotation control system was developed to rotate the RMC unit precisely, and a graphical user interface-based software was also developed to operate the data acquisition with RMC rotation. The RMC system was developed to allow combining various types of collimator masks and detectors interchangeably, making the imaging system more versatile for various applications and conditions. Results and Discussion: Operational performance of the fabricated system was studied by checking the accuracy and precision of the collimator rotation and obtaining modulation patterns from a gamma-ray source repeatedly. Conclusion: The prototype RMC system showed reliability in its mechanical properties and reproducibility in the acquisition of modulation patterns, and it will be further investigated for its dual-particle imaging capability with various complex radioactive source conditions.

A study on the transformation of EO parameters using Boresight calibration (Boresight calibration을 이용한 외부표정요소 산출에 관한 연구)

  • 박수영;윤여상;김준철;정주권;주영은
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.129-134
    • /
    • 2003
  • Mobile Mapping System needs system calibration of multi sensors. System calibration is defined as determination of spatial and rotational offsets between the sensors. Especially, EO parameters of GPS/INS require knowledge of the calibration to camera frame. The calibration parameters must be determined with the highest achievable accuracy in order to get 3D coordinate points in stereo CCD images. This study applies Boresight calibration for the calibration between GPS/INS and camera, and estimates the Performance of the calibration.

  • PDF

Source Image Based New 3D Rotational Angiography for Differential Diagnosis between the Infundibulum and an Internal Carotid Artery Aneurysm : Pilot Study

  • Jang, Hyeongyu;Jung, Woo Sang;Myoung, Seong Uk;Kim, Jung-Jae;Jang, Chang Ki;Cho, Kwang-Chun
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.5
    • /
    • pp.726-731
    • /
    • 2021
  • Objective : Distinguishing between an infundibulum and a true aneurysm is clinically important. This study aimed to evaluate whether using source image based new three-dimensional rotational angiography (S-n3DRA) can increase the rate of aneurysm detection and improve distinction between a true aneurysm and an infundibulum. Methods : Twenty-two consecutive patients with 23 lesions, were evaluated by time-of-flight (TOF) magnetic resonance angiography (MRA), S-n3DRA, and digital subtraction angiography (DSA). The data were retrospectively and independently reviewed by two neurointerventionists, and the diagnoses based on TOF MRA, S-n3DRA, and DSA were compared. The diagnostic efficacy (interobserver agreement and diagnostic performance) of S-n3DRA was compared with that of TOF MRA. Results : S-n3DRA showed higher interobserver agreement (κ=0.923) than TOF MRA (κ=0.465) and significantly higher accuracy than MRA in distinguishing an aneurysm from an infundibulum (p=0.0039). Conclusion : Compared to MRA, S-n3DRA could provide better screening accuracy and information for distinguishing an aneurysm from an infundibulum. Therefore, S-n3DRA has the potential to reduce the need for DSA.

Augmented Feature Point Initialization Method for Vision/Lidar Aided 6-DoF Bearing-Only Inertial SLAM

  • Yun, Sukchang;Lee, Byoungjin;Kim, Yeon-Jo;Lee, Young Jae;Sung, Sangkyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1846-1856
    • /
    • 2016
  • This study proposes a novel feature point initialization method in order to improve the accuracy of feature point positions by fusing a vision sensor and a lidar. The initialization is a process that determines three dimensional positions of feature points through two dimensional image data, which has a direct influence on performance of a 6-DoF bearing-only SLAM. Prior to the initialization, an extrinsic calibration method which estimates rotational and translational relationships between a vision sensor and lidar using multiple calibration tools was employed, then the feature point initialization method based on the estimated extrinsic calibration parameters was presented. In this process, in order to improve performance of the accuracy of the initialized feature points, an iterative automatic scaling parameter tuning technique was presented. The validity of the proposed feature point initialization method was verified in a 6-DoF bearing-only SLAM framework through an indoor and outdoor tests that compare estimation performance with the previous initialization method.

Characterizing nonlinear oscillation behavior of an MRF variable rotational stiffness device

  • Yu, Yang;Li, Yancheng;Li, Jianchun;Gu, Xiaoyu
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • Magneto-rheological fluid (MRF) rotatory dampers are normally used for controlling the constant rotation of machines and engines. In this research, such a device is proposed to act as variable stiffness device to alleviate the rotational oscillation existing in the many engineering applications, such as motor. Under such thought, the main purpose of this work is to characterize the nonlinear torque-angular displacement/angular velocity responses of an MRF based variable stiffness device in oscillatory motion. A rotational hysteresis model, consisting of a rotatory spring, a rotatory viscous damping element and an error function-based hysteresis element, is proposed, which is capable of describing the unique dynamical characteristics of this smart device. To estimate the optimal model parameters, a modified whale optimization algorithm (MWOA) is employed on the captured experimental data of torque, angular displacement and angular velocity under various excitation conditions. In MWOA, a nonlinear algorithm parameter updating mechanism is adopted to replace the traditional linear one, enhancing the global search ability initially and the local search ability at the later stage of the algorithm evolution. Additionally, the immune operation is introduced in the whale individual selection, improving the identification accuracy of solution. Finally, the dynamic testing results are used to validate the performance of the proposed model and the effectiveness of the proposed optimization algorithm.

Oil-Air Lubrication Characteristics of a High Speed Spindle System for Machine Tools(I) Effect of Oil Supply Rate, Rotational Spindle Speed and Spindle System Structure (공작기계용 고속주축계의 오일에어윤활특성에 관한 연구 (I) 공급유량, 주축회전수 및 주축계 구조의 영향)

  • 김석일;최대봉;박경호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.351-358
    • /
    • 1993
  • Recently a high speed spindle system for machine tools has attracted considerable attention to reduce the machining time, to improve the machining accuracy, to perform the machining of light metals and hard materials and to unite the cutting and grinding processes. In this study, a high speed spindle system is developed by applying the oil-air lubrication method, angular contact ball bearings, injection nozzles with dual orifices and so on. And a lubrication experiment for evaluating the performance of the spindle system is carried out. Especially, in order to establish the lubrication conditions related to the development of a high speed spindle system, the effects of oil supply rate, rotational spindle speed and so on are studied and discussed on the bearing temperature rise, bearing temperature distribution and frictional torque. And the effect of spindle system structure on the bearing temperature distribution is investigated.

Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates

  • Belarbia, Mohamed-Ouejdi;Tatib, Abdelouahab;Ounisc, Houdayfa;Benchabane, Adel
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.473-506
    • /
    • 2016
  • The aim of this work is the development of a 2D quadrilateral isoparametric finite element model, based on a layerwise approach, for the bending analysis of sandwich plates. The face sheets and the core are modeled individually using, respectively, the first order shear deformation theory and the third-order plate theory. The displacement continuity condition at the interfaces 'face sheets-core' is satisfied. The assumed natural strains method is introduced to avoid an eventual shear locking phenomenon. The developed element is a four-nodded isoparametric element with fifty two degrees-of-freedom (52 DOF). Each face sheet has only two rotational DOF per node and the core has nine DOF per node: six rotational degrees and three translation components which are common for the all sandwich layers. The performance of the proposed element model is assessed by six examples, considering symmetric/unsymmetric composite sandwich plates with different aspect ratios, loadings and boundary conditions. The numerical results obtained are compared with the analytical solutions and the numerical results obtained by other authors. The results indicate that the proposed element model is promising in terms of the accuracy and the convergence speed for both thin and thick plates.