• Title/Summary/Keyword: Rotational Matrix

Search Result 156, Processing Time 0.029 seconds

A simplified geometric stiffness in stability analysis of thin-walled structures by the finite element method

  • Senjanovic, Ivo;Vladimir, Nikola;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.313-321
    • /
    • 2012
  • Vibration analysis of a thin-walled structure can be performed with a consistent mass matrix determined by the shape functions of all degrees of freedom (d.o.f.) used for construction of conventional stiffness matrix, or with a lumped mass matrix. In similar way stability of a structure can be analysed with consistent geometric stiffness matrix or geometric stiffness matrix with lumped buckling load, related only to the rotational d.o.f. Recently, the simplified mass matrix is constructed employing shape functions of in-plane displacements for plate deflection. In this paper the same approach is used for construction of simplified geometric stiffness matrix. Beam element, and triangular and rectangular plate element are considered. Application of the new geometric stiffness is illustrated in the case of simply supported beam and square plate. The same problems are solved with consistent and lumped geometric stiffness matrix, and the obtained results are compared with the analytical solution. Also, a combination of simplified and lumped geometric stiffness matrix is analysed in order to increase accuracy of stability analysis.

CDM Controller Incorporating Friction Compensation for Rotational Inverted Pendulum

  • Cahyadi, Adha I.;Benjanarasuth, Taworn;Isarakorn, Don;Ngamwiwit, Jongkol;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1901-1905
    • /
    • 2004
  • A controller designed by CDM for a servo type system which is an augmented system constructed from a rotational inverted pendulum with an integrator added to its arm, is presented in this paper. In order to be able to apply the CDM concept, the augmented system must be linearized and converted into controllable canonical form. Then, the controller consisting of the state feedback gain matrix and an integral gain in the sense of CDM can be obtained. This shows that design procedure for the proposed controller is easy. The experimental results obtained from the rotational inverted pendulum controlled by the proposed controller show that the system response has no steady-state error, however, the oscillation amplitude of the arm angle is still significant. Therefore, in this paper, the friction compensation using Coulomb friction with stiction is also added to the controller. The oscillation amplitude of the arm angle that can be reduced remarkably is also shown in the experimental results.

  • PDF

Improving Accuracy of Measurement of Rigid Body Motion by Using Transfer Matrix (전달 행렬을 이용한 강체 운동 측정의 정확도 개선)

  • 고강호;국형석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.253-259
    • /
    • 2002
  • The rigid body characteristics (value of mass, Position of center of mass, moments and products of inertia) of mechanical systems can be identified from FRF data or vibration spectra of rigid body motion. Therefore the accuracy of rigid body characteristics is connected directly with the accuracy of measured data for rigid body motions. In this paper, a method of improving accuracy of measurement of rigid body motion is presented. Applying rigid body theory, ail translational and rotational displacements at a tentative point on the rigid body are calculated using the measured translational displacements for several points and transfer matrix. Then the estimated displacements for the identical points are calculated using the 6 displacements of the tentative Point and transfer matrix. By using correlation coefficient between measured and estimated displacements, we can detect the existence of errors that are contained in a certain measured displacement. Consequently, the improved rigid body motion with respect to a tentative point can be obtained by eliminating the contaminated data.

  • PDF

Development and Application of Mueller Matrix Ellipsometry (Mueller Matrix Ellipsometry 제작 및 응용)

  • 방경윤;경재선;오혜근;김옥경;안일신
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.31-34
    • /
    • 2004
  • We develop Mueller-matrix spectroscopic ellipsometry based on dual compensator configuration. This technique is very powerful for measuring surface anisotropy in nano-scale, especially when materials show depolarization. Dual-rotating compensator configuration is adopted with the rotational ratio of 5:3 originally developed by Collins et al[1]. The instrument can provide 250-point spectra over the wavelength range from 230 nm to 820 nm in one irradiance waveform with minimum acquisition time of Tc=10 s. In this work, the results obtained in transmission modes are presented for the initial attempt. We present calibration procedures to diagnose the system from the utilized data collected in transmission mode without sample. We expect that the instrument will have important applications in thin films and surfaces that have anisotropy and inhomogeneity.

  • PDF

Computational Algorithm for Nonlinear Large-scale/Multibody Structural Analysis Based on Co-rotational Formulation with FETI-local Method (Co-rotational 비선형 정식화 및 FETI-local 기법을 결합한 비선형 대용량/다물체 구조 해석 알고리듬 개발)

  • Cho, Haeseong;Joo, HyunShig;Lee, Younghun;Gwak, Min-cheol;Shin, SangJoon;Yoh, Jack J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.775-780
    • /
    • 2016
  • In this paper, a computational algorithm of an improved and versatile structural analysis applicable for large-size flexible nonlinear structures is developed. In more detail, nonlinear finite element based on the co-rotational (CR) framework is developed. Then, a finite element tearing and interconnecting method using local Lagrange multipliers (FETI-local) is combined with the nonlinear CR finite element. The resulting computational algorithm is presented and applied for nonlinear static analyses, i.e., cantilevered beam and multibody structure. Finally, the proposed analysis is evaluated with regard to its parallel computation performance, and it is compared with those obtained by serial computation using the sparse matrix linear solver, PARDISO.

Dynamic Analysis of Cracked Timoshenko Beams Using the Transfer Matrix Method (전달행렬법을 사용하여 균열이 있는 티모센코 보의 동특성 해석)

  • Kim, Jung Ho;Kwak, Jong Hoon;Lee, Jung Woo;Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.179-186
    • /
    • 2016
  • This paper presents a numerical method that can evaluate the effect of crack for the in-plane bending vibration of Timoshenko beam. The method is a transfer matrix method that the element transfer matrix is deduced from the element dynamic stiffness matrix. An edge crack is expressed as a rotational spring, and then is formulated as an independent transfer matrix. To demonstrate the accuracy of this theory, the results computed from the present are compared with those obtained from the commercial finite element analysis program. Based on these comparison results, a parametric study is performed to analyze the effects for the size and locations of crack.

Pin Power Distribution Determined by Analyzing the Rotational Gamma Scanning Data of HANARO Fuel Bundle

  • Lee, Jae-Yun;Park, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.452-461
    • /
    • 1998
  • The pin power distribution is determined by analyzing the rotational gamma scanning data for 36 element fuel bundle of HANARO. A fission monitor of Nb$^{95}$ is chosen by considering the criteria of the half-life, fission yield, emitting ${\gamma}$-ray energy and probability. The ${\gamma}$-ray spectra were measured in Korea Atomic Energy Research Institute(KAERI) by using a HPGe detector and by rotating the fuel bundle at steps of 10$^{\circ}$. The counting rates of Nb$^{95}$ 766 keV ${\gamma}$-rays are determined by analyzing the full absorption peak in the spectra. A 36$\times$36 response matrix is obtained from calculating the contribution of each rod at every scanning angle by assuming 2-dimensional and parallel beam approximations for the measuring geometry. In terms of the measured counting rates and the calculated response matrix, an inverse problem is set up for the unknown distribution of activity concentrations of pins. To select a suitable solving method, the performances of three direct methods and the iterative least-square method are tested by solving simulation examples. The final solution is obtained by using the iterative least-square method that shows a good stability. The influences of detection error, step size of rotation and the collimator width are discussed on the accuracy of the numerical solution. Hence an improvement in the accuracy of the solution is proposed by reducing the collimator width of the scanning arrangement.

  • PDF

Comparison of Source Apportionment of PM2.5 Using PMF2 and EPA PMF Version 2

  • Hwang, In-Jo;Hopke, Philip K.
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.86-96
    • /
    • 2011
  • The positive matrix factorization (PMF2) and multilinear engine (ME2) models have been shown to be powerful environmental analysis techniques and have been successfully applied to the assessment of ambient particulate matter (PM) source contributions. Because these models are difficult to apply practically, the US EPA developed a more user-friendly version of the PMF. The initial version of the EPA PMF model does not provide any rotational capabilities; for this reason, the model was upgraded to include rotational functions in the EPA PMF ver. 2.0. In this study, PMF and EPA PMF modeling identified ten particulate matter sources including secondary sulfate I, vehicle gasoline, secondary sulfate II, secondary nitrate, secondary sulfate III, incinerators, aged sea salt, airborne soil particles, oil combustion, and diesel emissions. All of the source profiles determined by the two models showed excellent agreement. The calculated average concentrations of $PM_{2.5}$ were consistent between the PMF2 and EPA PMF ($17.94{\pm}0.30{\mu}g/m^3$ and $17.94{\pm}0.30\;{\mu}g/m^3$, respectively). Also, each set of estimated source contributions of the PMF2 and EPA PMF showed good agreement. The results from the new EPA PMF version applying rotational functions were consistent with those of PMF2. Therefore, the updated version of EPA PMF with rotational capabilities will provide more reasonable solutions compared with those of PMF2 and can be more widely applied to air quality management.

Plant Back Interval of Fluopyram Based on Primary Crop-derived Soil and Bare Soil Residues for Rotational Cultivation of Radish (Fluopyram의 전작물 유래 및 나지조건 토양잔류성에 기초한 알타리무의 식물식재후방기간)

  • Kim, Young Eun;Yoon, Ji Hyun;Lim, Da Jung;Kim, Seon Wook;Cho, Hyunjeong;Shin, Byeung Gon;Kim, Hyo Young;Kim, In Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.2
    • /
    • pp.99-107
    • /
    • 2021
  • BACKGROUND: Pesticide uptake by a rotational crop after being used for the primary crop is a potential cause of violation against the pesticide law if the pesticide is not registered in the secondary crop. This study was conducted to investigate the plant back interval (PBI) of fluopyram for the rotational cultivation of radish. METHODS AND RESULTS: Two experimental approaches were performed the evaluation of residues in radish cultivated successively in soil 16 days after treated with fluopyram onto pepper plant (T1) and in radish cultivated in bare soil treated with fluopyram at PBI 30 and PBI 60 days (T2). A modified QuEChERS method coupled with LC/MS/MS analysis showed good linearity of matrix-matched standard calibration of fluopyram with the coefficient values of determination greater than 0.995. Recovery values at levels of 0.01, 0.05, 0.1 and 0.25 mg/kg ranged from average 84.9 to 117.6% with RSD less than 10%. Fluopyram residues in radish harvested from T1 and T2 were found as levels less than maximum residue limit. CONCLUSION: This study suggests 20~30 days as the PBI of fluopyram for the rotational cultivation of radish in the greenhouse soil treated with fluopyram used for pepper as the primary crop.

Influence of Moving Mass on Dynamic Behavior of Simply Supported Timoshenko Beam with Crack

  • Yoon Han-Ik;Choi Chang-Soo;Son In-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.24-29
    • /
    • 2006
  • In this paper, the effect of open crack on the dynamic behavior of simply supported Timoshenko beam with a moving mass was studied. The influences of the depth and the position of the crack on the beam were studied on the dynamic behavior of the simply supported beam system by numerical methods. The equation of motion is derived by using Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is modeled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces on the crack section and is derived by applying fundamental fracture mechanics theory. As the depth of the crack increases, the mid-span deflection of the Timoshenko beam with a moving mass is increased.