• 제목/요약/키워드: Rotation Estimation

검색결과 278건 처리시간 0.026초

Unscented Filtering in a Unit Quaternion Space for Spacecraft Attitude Estimation

  • Cheon, Yee-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.894-900
    • /
    • 2005
  • A new approach to the straightforward implementation of the unscented filter in a unit quaternion space is proposed for spacecraft attitude estimation. Since the unscented filter is formulated in a vector space and the unit quaternions do not belong to a vector space but lie on a nonlinear manifold, the weighted sum of quaternion samples does not produce a unit quaternion estimate. To overcome this difficulty, a method of weighted mean computation for quaternions is derived in rotational space, leading to a quaternion with unit norm. A quaternion multiplication is used for predicted covariance computation and quaternion update, which makes a quaternion in a filter lie in the unit quaternion space. Since the quaternion process noise increases the uncertainty in attitude orientation, modeling it either as the vector part of a quaternion or as a rotation vector is considered. Simulation results illustrate that the proposed approach successfully estimates spacecraft attitude for large initial errors and high tip-off rates, and modeling the quaternion process noise as a rotation vector is more optimal than handling it as the vector part of a quaternion.

  • PDF

ART의 위상정보를 이용한 회전각도 추정 방법 (A Rotation Angle Estimation Method Based on Phase of ART)

  • 이종민;김회율
    • 방송공학회논문지
    • /
    • 제17권1호
    • /
    • pp.81-94
    • /
    • 2012
  • 본 논문에서는 두 영상간의 회전각도를 추정하는 방법들 중에서, 정확도에서 높은 성능을 제공하는 저니키 모멘트의 위상을 이용한 방법들의 회전각도 추정 결과의 정확도를 비교하여 제시하고, 기존의 방법들보다 정확하게 각도를 추정하는 angular radial transform(ART) 계수들의 위상성분을 이용한 회전각도 추정방법을 제안한다. 제안하는 방법은 Revaud가 제안한 저니키 모멘트를 이용한 회전각도 추정 방법[1]을 ART로 확장한 방법이다. ART는 저니키 모멘트에 비해서 회전에 의한 영상의 변화를 보다 효과적으로 서술할 수 있는 기저함수의 생성이 가능하기 때문에 저니키 모멘트보다 두 영상간의 회전각도를 정확히 추정하는 것을 가능하게 한다. MPEG-7 데이터셋을 이용한 실험 결과, 제안하는 방법이 제곱평균제곱근오차(root mean square error) 대 커버리지(coverage)를 기준으로한 성능비교에서 가장 우수한 성능을 보였다.

다층지반 하에서 수평하중을 받는 말뚝의 회전점 (Rotation Point of Laterally Loaded Pile Under Multi Layered Soil)

  • 강병준;경두현;홍정무;이준환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.708-712
    • /
    • 2008
  • Piles and pile foundations have been in common use since very early times. Usually function of piles is to carry load to a depth at which adequate support is available. Another important use of piles is to furnish lateral support and nowadays it is getting highlighted due to the wind load, lateral action of earthquake, and so on. After Broms (1964), many researchers have been suggested methods for estimating lateral capacity of pile. But each method assumes different earth pressure distribution and lateral earth pressure coefficient and it gives confusion to pile designers. Lateral earth pressure, essential in lateral capacity estimation, influenced by pile's behavior under lateral load. Prasad and Chari (1999) assumed the rotation point of pile and suggested an equation of ultimate lateral load capacity. In this study, we investigate the depth of rotation point in both homogeneous soil and multi layered soil, and compare to the estimation value by previous research. To model the pile set up in the sand, we use the chamber and small scale steel pile, and rain drop method. Test results show the rotation point is formed where the Prasad and Chari's estimation value, and they also show multi layered condition affects to location of rotation point to be scattered.

  • PDF

다채널 이미지의 회전각 추정 (Rotation Angle Estimation of Multichannel Images)

  • 이봉규;양요한
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권6호
    • /
    • pp.267-271
    • /
    • 2002
  • The Hotelling transform is based on statistical properties of an image. The principal uses of this transform are in data compression. The basic concept of the Hotelling transform is that the choice of basis vectors pointing the direction of maximum variance of the data. This property can be used for rotation normalization. Many objects of interest in pattern recognition applications can be easily standardized by performing a rotation normalization that aligns the coordinate axes with the axes of maximum variance of the pixels in the object. However, this transform can not be used to rotation normalization of color images directly. In this paper, we propose a new method for rotation normalization of color images based on the Hotelling transform. The Hotelling transform is performed to calculate basis vectors of each channel. Then the summation of vectors of all channels are processed. Rotation normalization is performed using the result of summation of vectors. Experimental results showed the proposed method can be used for rotation normalization of color images effectively.

Extended Kalman Filter Based GF-INS Angular Velocity Estimation Algorithm

  • Kim, Heyone;Lee, Junhak;Oh, Sang Heon;Hwang, Dong-Hwan;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권3호
    • /
    • pp.107-117
    • /
    • 2019
  • When a vehicle moves with a high rotation rate, it is not easy to measure the angular velocity using an off-the-shelf gyroscope. If the angular velocity is estimated using the extended Kalman filter in the gyro-free inertial navigation system, the effect of the accelerometer error and initial angular velocity error can be reduced. In this paper, in order to improve the navigation performance of the gyro-free inertial navigation system, an angular velocity estimation method is proposed based on an extended Kalman filter with an accelerometer random bias error model. In order to show the validity of the proposed estimation method, angular velocities and navigation outputs of a vehicle with 3 rev/s rotation rate are estimated. The results are compared with estimates by other methods such as the integration and an extended Kalman filter without an accelerometer random bias error model. The proposed method gives better estimation results than other methods.

Fine-Motion Estimation Using Ego/Exo-Cameras

  • Uhm, Taeyoung;Ryu, Minsoo;Park, Jong-Il
    • ETRI Journal
    • /
    • 제37권4호
    • /
    • pp.766-771
    • /
    • 2015
  • Robust motion estimation for human-computer interactions played an important role in a novel method of interaction with electronic devices. Existing pose estimation using a monocular camera employs either ego-motion or exo-motion, both of which are not sufficiently accurate for estimating fine motion due to the motion ambiguity of rotation and translation. This paper presents a hybrid vision-based pose estimation method for fine-motion estimation that is specifically capable of extracting human body motion accurately. The method uses an ego-camera attached to a point of interest and exo-cameras located in the immediate surroundings of the point of interest. The exo-cameras can easily track the exact position of the point of interest by triangulation. Once the position is given, the ego-camera can accurately obtain the point of interest's orientation. In this way, any ambiguity between rotation and translation is eliminated and the exact motion of a target point (that is, ego-camera) can then be obtained. The proposed method is expected to provide a practical solution for robustly estimating fine motion in a non-contact manner, such as in interactive games that are designed for special purposes (for example, remote rehabilitation care systems).

평가 함수를 사용하여 회전에 강건한 자동 얼굴 영역 검출과 추적 (Automatic Face Region Detection and Tracking for Robustness in Rotation using the Estimation Function)

  • 김기상;김계영;최형일
    • 한국콘텐츠학회논문지
    • /
    • 제8권9호
    • /
    • pp.1-9
    • /
    • 2008
  • 일반적으로 얼굴 추적 시 움직임에 강건한 Lucas-Kanade 추적 방법이 많이 사용된다. 그러나 얼굴이 회전되었을 경우, 정확한 얼굴 영역 검출이 어렵다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 Lucas-Kanade 추적 방법에 평가함수를 도입하여 회전에 강건한 자동 얼굴 영역 검출 및 추적 방법을 제안하였다. 얼굴영역은 색상정보를 이용하여 자동으로 추출하였으며, Harris 코너 추출 알고리즘으로 특징점을 추출하였다. 폐색된 특징점을 구분하기위하여 특징점마다 기존 특징점과 새로운 특징점과의 차이 값을 계산한다. 만약, 특징점이 폐색되었을 경우, 잡음을 제거하기 위하여 제거하며 특징점의 개수가 일정 임계값 이하일 경우, 얼굴 영역을 다시 검출하였다. 실험결과를 통하여 얼굴 영역이 회전되었을 경우, 기존의 Lucas-Kanade 추적 방법보다 더 좋은 결과를 확인하였다.

Motion of rigid unsymmetric bodies and coefficient of friction by earthquake excitations

  • Zadnik, Branko
    • Structural Engineering and Mechanics
    • /
    • 제2권3호
    • /
    • pp.257-267
    • /
    • 1994
  • Motions of an unsymmetric rigid body on a rigid floor subjected to earthquake excitations with special attention to coefficient of friction are investigated. Motions of a body in a plane are classified (Ishiyama 1980) into six types, i.e. (1) rest, (2) slide, (3) rotation, (4) slide rotation, (5) translation jump, (6) rotation jump. Based upon the theoretical and experimental research work special attention is paid to the sliding of a body. The equations of motions and the behavior of coefficient of friction in the time of floor excitation are studied. One of the features of this investigation is the introduction and estimation of the "time dependent" coefficient of friction. It has been established that the constant kinetic coefficient of friction $${\mu}(kin){\sim_\sim}0.8{\mu}(stat)$$ does not give the appropriate results. The method for the estimation of the friction coefficient variation during the time is given.

Nozzle Swing Angle Measurement Involving Weighted Uncertainty of Feature Points Based on Rotation Parameters

  • Liang Wei;Ju Huo;Chen Cai
    • Current Optics and Photonics
    • /
    • 제8권3호
    • /
    • pp.300-306
    • /
    • 2024
  • To solve the nozzle swing angle non-contact measurement problem, we present a nozzle pose estimation algorithm involving weighted measurement uncertainty based on rotation parameters. Firstly, the instantaneous axis of the rocket nozzle is constructed and used to model the pivot point and the nozzle coordinate system. Then, the rotation matrix and translation vector are parameterized by Cayley-Gibbs-Rodriguez parameters, and the novel object space collinearity error equation involving weighted measurement uncertainty of feature points is constructed. The nozzle pose is obtained at this step by the Gröbner basis method. Finally, the swing angle is calculated based on the conversion relationship between the nozzle static coordinate system and the nozzle dynamic coordinate system. Experimental results prove the high accuracy and robustness of the proposed method. In the space of 1.5 m × 1.5 m × 1.5 m, the maximum angle error of nozzle swing is 0.103°.

원형관로 영상을 이용한 관로주행 로봇의 자세 추정 (Robot Posture Estimation Using Circular Image of Inner-Pipe)

  • 윤지섭;강이석
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권6호
    • /
    • pp.258-266
    • /
    • 2002
  • This paper proposes the methodology of the image processing algorithm that estimates the pose of the inner-pipe crawling robot. The inner-pipe crawling robot is usually equipped with a lighting device and a camera on its head for monitoring and inspection purpose of defects on the pipe wall and/or the maintenance operation. The proposed methodology is using these devices without introducing the extra sensors and is based on the fact that the position and the intensity of the reflected light from the inner wall of the pipe vary with the robot posture and the camera. The proposed algorithm is divided into two parts, estimating the translation and rotation angle of the camera, followed by the actual pose estimation of the robot . Based on the fact that the vanishing point of the reflected light moves into the opposite direction from the camera rotation, the camera rotation angle can be estimated. And, based on the fact that the most bright parts of the reflected light moves into the same direction with the camera translation, the camera position most bright parts of the reflected light moves into the same direction with the camera translation, the camera position can be obtained. To investigate the performance of the algorithm, the algorithm is applied to a sewage maintenance robot.