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Robust motion estimation for human–computer 
interactions played an important role in a novel method  
of interaction with electronic devices. Existing pose 
estimation using a monocular camera employs either ego-
motion or exo-motion, both of which are not sufficiently 
accurate for estimating fine motion due to the motion 
ambiguity of rotation and translation. This paper presents 
a hybrid vision-based pose estimation method for fine-
motion estimation that is specifically capable of extracting 
human body motion accurately. The method uses an ego-
camera attached to a point of interest and exo-cameras 
located in the immediate surroundings of the point of 
interest. The exo-cameras can easily track the exact 
position of the point of interest by triangulation. Once the 
position is given, the ego-camera can accurately obtain the 
point of interest’s orientation. In this way, any ambiguity 
between rotation and translation is eliminated and the 
exact motion of a target point (that is, ego-camera) can 
then be obtained. The proposed method is expected to 
provide a practical solution for robustly estimating fine 
motion in a non-contact manner, such as in interactive 
games that are designed for special purposes (for example, 
remote rehabilitation care systems). 
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I. Introduction 

Recently, vision-based interfaces, which are widely used in 
many smart devices [1], are being designed with the help of 
motion estimation from camera images; for example, a depth 
camera, in comparison to an RGB camera, can offer different 
and more useful information for human–computer interaction 
(HCI) [2].  

Motion estimation using either a single camera or multiple 
cameras has been used in electronic devices to achieve natural 
HCI. However, the vision-based methods in [1]–[2] are not 
precise enough for estimating fine motion (for example, breath-
induced motion or wrist motion in home environments). To 
solve this problem, this paper presents a hybrid vision-based 
pose estimation method for fine-motion estimation that takes 
advantage of both an ego-camera and exo-cameras, as shown 
in Fig. 1. The proposed method can be roughly divided into 
ego-camera-based and exo-camera-based pose estimation. 
Pose estimation using an ego-camera is mainly employed for 
object self-motion (for example, robots, vehicles, and so on) 
[3]–[4]. The ego-motion-based pose estimation methods in 
[3]–[4] for estimating self-position use a large number of  
 

  

Fig. 1. Example configuration of ego-camera and exo-cameras.
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background markers or features. 
The estimation of ego-motion using a vision method that 

uses sequential stereo images [5] is limited by the inherent 
ambiguity of rotation and translation for fine motion [6].  

Exo-camera-based pose estimation by fixed external 
observation cameras is popular for HCI [7]. This method of 
estimating a user’s pose involves using attached body markers 
or depth information with trained body part locators (for 
example, limbs, torso, head, and so on). Nevertheless, the fact 
still remains that it is difficult to detect and estimate the exact 
rotations of a small target object due to the difficulty in 
distinguishing the object’s fine motions. Moreover, accurate 
pose estimation often requires complex optimization using 
non-linear equations [8]–[10].  

As the ego-camera-based and exo-camera-based approaches 
have distinct advantages and disadvantages, it is necessary to 
develop an effective method that utilizes the advantages of both 
approaches. The main contribution of this paper lies in 
developing an efficient algorithm that incorporates the 
advantages of both systems. 

In this paper, we propose a hybrid vision-based pose 
estimation method for fine-motion estimation that can provide  
a high degree of accuracy by combining both of the 
aforementioned approaches. Therefore, in the proposed method, 
as it has such advantages, there is no need to solve complex non-
linear equations to ensure greater accuracy for real-time 
estimation. The proposed method first estimates the exact 
position of an ego-camera from two or more given exo-cameras. 
Then, it accurately estimates the fine rotation of the ego-camera 
by simple computation using the determined position. For this 
investigation, the proposed method was compared with a state-
of-the-art depth camera by error analysis tasks.  

The remainder of this paper is organized as follows.  
Section II describes a robust pose estimation method.   
Section III demonstrates our experimental results and analysis. 
Finally, Section IV presents our conclusion and describes 
future work. 

II. Robust Hybrid Vision-Based Pose Estimation 
Method 

Camera pose estimation using a calibrated camera involves 
finding the six external parameters of a point of interest; that is, 
the relative position and orientation of an ego-camera with 
respect to a world coordinate system.  

Figure 1 illustrates a configuration of the hybrid vision 
method. External parameters corresponding to the ego-camera 
are denoted by Rg (rotation) and tg (translation). The rotation 
and translation of the ego-camera can be calculated from the 
coordinates of the surrounding markers seen by the ego-camera. 

However, these motions are vulnerable to noise (observation 
error of a marker position in an ego-camera image). Thus, this 
paper introduces exo-cameras that observe target objects from 
the immediate surroundings of a point of interest. Therefore, it 
is a relatively simple procedure to extract the exact position of 
the ego-camera by triangulation using two or more of these 
exo-cameras. The value of translation (tg

e) is then used to 
calculate the exact rotation of the ego-camera. Since tg

e is 
highly accurate, the exact rotation of the ego-camera can be 
easily calculated, without ambiguity. Thus, this kind of hybrid 
system allows for the accurate attainment of the positions and 
orientations of small objects. 

In this paper, we use markers (feature points with known 
positions) for pose estimation without a loss of generality. 
However, it is possible to apply the proposed method to any 
point of interest in an image space. 

The projective image coordinate of the ith point, g ,
i

x  is 
related to the world coordinate of the ith point, XWi =       
[Xi, Yi, Zi, 1]T, as follows: 

g W g g W[ | ] ,
i i ix R t PX K X            (1) 

where K denotes the camera matrix belonging to the ego-
camera. Assuming that K is calibrated, ego-motion can be 
estimated using the following minimization: 

g g
g g g W

,
[ | ] .min i i

R t i

x R t K X             (2) 

In the above problem, the obtained Rg and tg tend to have 
considerable error due to the inherent ambiguity of rotation and 
translation. However, if a translation (tg

e) is obtained accurately 
by using exo-cameras, then the forthcoming rotation (Rg') 
obtained from the ego-camera will be more accurate than Rg. 
The aforementioned forthcoming rotation can be calculated 
from the following: 

e
g g g W g g W[ | ] [ | ] ,

i i ix R t R t K X K X        (3) 

where Rg' indicates the value of the updated rotation based on 
the exact translation (tg

e) given by the exo-cameras. Suppose 
that we have n marker observations. Then, the solution of Rg' 
can be obtained by the following minimization: 

g
g ,min

R
R C D


                (4) 

where 
T

1 2 W[ , ,..., ]; [ | 0] [ , , ] ;n i i i i iC C C C C I X Y Z  X  

1 e
1 2 g g[ , ,..., ]; ( ).n iD D D D D x t  K  

The solution of (4) can be found as follows [11]. First, we 
define a 4 by 4 matrix, B, by 

3
T

1

,i i
i

 B B B                 (5) 
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where  

           
T0 ( )

.
[ ]

i i
i

i i i i X

C D

D C D C

 
  

  
B  

Here, [.]X denotes a mapping from a three-dimensional vector 
to a 3 by 3 matrix, which is the solution of the rotation matrix 
in (4). 

III. Experimental Results  

1. Environments 

Figure 2 shows an experimental environment, whereby the 
featured ego-camera is able to move without error. From the 
figure, an ego-camera can be seen located on a rail. Two exo-
cameras are fixed on opposite sides of the ego-camera. The 
baseline of the exo-cameras is 110 mm, and the distance 
between the ego-camera and the exo-cameras is 0.8 m.  

For comparison between a single and hybrid method, 
experiments were performed with an optical board and 
instruments (see Fig. 2(d)). Images from the ego-camera and 
exo-cameras were captured simultaneously (see Fig. 3). For 
convenience, we used markers in our experiments, but our 
method can be used in conjunction with any points of interest  

 

     

Fig. 2. Experimental environment: (a) overview; (b) ego-camera 
and marker on rail; (c) ego-camera tumblers for rotation; 
and (d) experimental image. 
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Fig. 3. Camera images from: (a) exo-camera and (b) ego-camera.

(a) (b) 

 

 

 

Fig. 4. Depth camera images from: (a) overview, (b) exo-camera, 
and (c) experimental image. 
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in an image space. 

Next, Fig. 4 shows another experimental environment, 
whereby a depth camera is fixed and markers are moved in the 
same way as above. A depth camera is featured as opposed   
to exo-cameras; there is no ego-camera. The purpose of 
experiments carried out under this environment is to be able to 
investigate any systematic errors found to be in the depth 
camera and to then compare the findings with the results 
obtained from the experiments carried out under the proposed 
method in the experimental environment featured in Fig. 2. 
The results from the experiments carried out in the 
experimental environment featured in Fig. 4 were averaged. 
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2. Analysis 

For error analysis, four cases of estimating the motion of the 
ego-camera were compared: exo, in which a single exo-camera 
observes a small square marker (65 mm by 65 mm); ego, in 
which an ego-camera observes a relatively large square marker 
(150 mm by 150 mm); depth, in which a depth camera 
observes a small square marker position and estimates its 
orientation from a single exo-camera and depth information; 
and hybrid, in which a stereo exo-camera system calculates a 
marker’s position by triangulation and an ego-camera estimates  
its orientation using this position data (This is the proposed 
hybrid method.). First, to compare the accuracy and noise 
sensitivity of each method, we estimated the external 
parameters of each case after adding Gaussian random noise 
(GRN) with mean zero and standard deviation (σ = 0.3 to 0.5) 
to the image coordinates of the markers, as shown in Table 1. 
The rotation errors were calculated by root-mean-square error 
(RMSE). The results show that the single exo-camera case, exo, 
gives a poor performance. The depth case shows noise-
sensitive results, and the hybrid case demonstrates the best 
performance, as expected. Figure 5 shows the depth and hybrid 
systems’ improvement gains as the rotation error of the exo 
system is varied. To evaluate the similarity of these two 
systems, we use a normalized sum of RMSE as follows: 

 
 

2

e
2

e

exo1
10log ,

.
P

N

 
    
 

            (6) 

where (.)e is the error for each method and N is the total number 
of frames. 

Consequently, the results show that the use of a depth camera 
for fine-motion estimation is an improvement over using the 
correction based on depth information; however, a depth 
camera is more sensitive to noise. The improvement gain was 
calculated by dividing the depth and hybrid results over those 
from the exo case.  

This paper next analyzes the accuracy and noise sensitivity 
of the translation parameters (see Table 2). The ego case shows 
a poorer performance than the depth and hybrid cases, which 
demonstrate good performance, as expected. Furthermore, the  

 

Table 1. Results of RMSE for GRN (σ = 0.3 to 0.5). 

Camera σ Exo Depth Hybrid 

0.3 0.027405 0.001876 0.001166 

0.4 0.037292 0.015975 0.001847 
Rotation 

error (rad) 
0.5 0.056390 0.052769 0.001620 

 

Table 2. Results of RMSE for GRN (σ = 0.5). 

Camera Axis Ego Depth Hybrid 

x 0.128101 0.097565 0.020732 

y 0.110062 0.046205 0.033204 
Translation 
error (mm)

z 0.520179 0.077950 0.038168 

 

 
 

Fig. 5. System improvement gain in comparison with single exo-
camera and varying GRN: σ = 0.3 to 0.5 (depth/hybrid).
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Fig. 6. System improvement gain in comparison with ego-camera 
and GRN σ = 0.5 (depth/hybrid): depth camera has noise 
model, but we display only best result [12]. 
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depth camera has measurement resolution and error properties 
(for example, depth hole) [12], but we display the best result by 
GRN. Thus, the accuracy of a translation is not guaranteed in 
this case due to the inherent ambiguity of the ego-motion. 
Figure 6 shows that a depth camera can practically reduce the 
translation error, of a fine motion, in the z-axis, but the hybrid 
method has the best performance over all three axes (x-, y-, and 
z-axis).   

To demonstrate the effect of using an exact translation when 
estimating the fine motion (for example, 50 mm movement 
along x-axis) of the ego-camera, the ego, depth, and hybrid 
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Table 3. RMSE comparison for estimating fine motion movement.

Camera Axis Ego Depth  Stereo [5] Hybrid 

x 0.010448 0.006430 0.002803 0.000684

y 0.036996 0.019655 0.014920 0.004468
Rotation 

error (rad) 
z 0.002765 0. 002249 0.001141 0.001233

   

 

 

Fig. 7. System improvement rate comparison: ego-camera is 
moved 50 mm along x-axis (depth/stereo/hybrid). 
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cases were compared (see Table 3). It is difficult to determine 
the ground truth of the fine motion (that is, external camera 
parameters). Thus, this paper bypasses the problem by 
introducing controllable relative motion. The implications for 
motion are estimated by the external parameters with the ego-
camera at a given position by moving the camera 50 mm in the 
x-direction. Since there is no rotation, the rotation matrix in 
each of the three cases should remain the same. The angle 
difference before and after motion represents the amount of 
rotation error. As shown in Table 3, exchanging the translation 
by exo-cameras has a dramatic effect. The rotation error about 
the y-axis is dominant in this case. The horizontal movement 
seems to be misinterpreted as rotation about the vertical axis, 
which is a typical example of a motion ambiguity. Furthermore, 
the hybrid case shows the best performance, as expected.  

The proposed method shows the rotation error results in less 
than 0.005 rad, and the average system improvement gain is 
8.6 dB, as shown in Fig. 7. 

This study experimentally investigates the influence of 
marker size on the accuracy of motion estimation when ground 
truth data is obtained by movement without rotation, as shown 
in Fig. 8. As the marker size decreases, the rotation error grows 
in each case: the stereo, depth, and hybrid cases.  

The noise model derived from the errors of the depth camera 
considers both axial and lateral noise distributions, which are 
calculated from the distances and angles of the camera in 

 

Fig. 8. Influence of marker size on rotation accuracy: markers
move 50 mm along x-axis (depth/hybrid). 
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relation to the markers. [13]. Due to the noise model, the stereo 
vision-based ego-motion estimation method produced slightly 
better results than the depth camera method. In realistic 
situations where large markers are available, the proposed 
hybrid method demonstrates considerable enhancement 
compared with the stereo and depth camera cases.  

The results confirm that the proposed method is more 
accurate for pose estimation than the depth camera–based 
method. Moreover, the computational complexity of the hybrid 
method is very low because the entire problem is linear. Thus, 
the proposed hybrid method is well suited to extracting 
accurate motion information in real time. 

IV. Conclusion and Future Work 

This paper presents a hybrid pose estimation method based 
on an ego-camera and exo-cameras without the need for 
complex computation of non-linear equations. The hybrid 
system takes advantage of both ego-camera and exo-camera 
systems, demonstrating superior performance with reduced 
computational complexity. The method is applied to a typical 
rehabilitation application that requires accurate body motion, 
and demonstrates its usefulness. This study expects the method 
can be applied to a variety of applications that require fine and 
accurate motion estimation.  

We are currently conducting rigorous performance analyses 
using the Cramer-Rao lower bound. In the future, the 
generalization of this framework to other scenarios will be 
explored, as well as expansion to incorporating different visual 
cues, such as optical flow and shading. 
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