• 제목/요약/키워드: Rotating-axis

검색결과 288건 처리시간 0.024초

회전 주사식 위상 배열 안테나의 빔 조향 방법 (A Beam Steering Method of the Rotating Scanning Phased Array Antenna)

  • 한동호;염동진;권경일;홍동희
    • 한국전자파학회논문지
    • /
    • 제7권2호
    • /
    • pp.147-156
    • /
    • 1996
  • 본 논문에서는 평면형 도파관 스롯 배열 안테나의 빔 조향 방정식을 제시하였다. 빔 조향시 안테나 회전축의 기움각과 개구면 분포는 가장 중요한 요소이다. 빔 조향 관련 식들로 부터 원하는 빔 방향에 대한 안테나 개구면의 위상 분포 및 주피수를 구하였다. 또한 일차원 위상 배열 안테나의 변위기에 위상 데이타릎 전달하는 고속 제어 알고리즘을 개발하였다. 제어 회로의 복잡성파 위상 전달시간을 줄이기 위해 직렬 중계에 의한 변위량 공급 방식을 제안하였다. 이 방식은 간단한 회로구조를 가지므로 복잡한 2차원 완전 위상 배열 안테나에 유용하게 쓰일 수 있을 것으로 기대된다.

  • PDF

횡 방향으로 회전하는 구 주위의 유동특성 (Laminar Flow past a Sphere Rotating in the Transverse Direction)

  • 김동주;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.83-86
    • /
    • 2002
  • Numerical simulations are conducted for laminar flow past a sphere rotating In the transverse direction, in order to investigate the effect of the rotation on the characteristics of flow over a sphere. The Reynolds numbers considered are Re=100, 250 and 300 based on the free-stream velocity and the sphere diameter, and the rotational speeds are in the range of $0{\leq}{\omega}{\leq}1$, where ${\omega}^{\ast}$ is the maximum velocity on the sphere surface normalized by the free-stream velocity. At ${\omega}^{\ast}=0$ (without rotation), the flow past the sphere experiences steady axisymmeoy, steady planar-symmetry and unsteady planar-symmetry, respectively, at Re=100, 250 and 300. However, with rotation, the flow becomes planar-symmetric for all the cases investigated and the symmetry plane is orthogonal to the axis of the rotation. The flow is also steady or unsteady depending on both the Reynolds number and the rotational speed, and the vortical structures behind the sphere are significantly modified by the rotation. For example, at Re=300, hairpin vortices completely disappear in the wake at ${\omega}^{\ast}=0.4\;and\;0.6$, and at ${\omega}^{\ast}=1$ vortical structures of a high frequency are newly generated due to the shear layer instability. It is also shown that with increasing rotational speed, the time-averaged drag and lift coefficients increase monotonically.

  • PDF

순간주파수 분석기법의 응용 (1) -알고리즘간의 성능비교 및 잡음영향- (Application of Instantaneous Frequency Analysis(I) -Algorithm Performance and Noise Effects-)

  • 김정태;임병덕
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.1050-1056
    • /
    • 1994
  • When a vibration data for a rotating machine such as a pump or a compressor is concerned, the frequency fluctuation of the energy contents at an instant time may provide useful information on understanding the vibration characteristics of the rotating machinery, rather than the averaged energy distribution along the frequency axis. Especially, when a periodic signal has different spectral contents, the approach to use the averaged frequency distribution, called the normal frequency analysis, may not be appropriate to extract vibration source characteristics of the structure. This paper introduces a way to analyze the signal based on an instant time. In order to evaluate the performance of the various approach, the investigatation compares three different algorithms which are frequently implemented in the instantaneous frequency analysis. Also for the noise effect embodied in the true signal, various cases for different SN ratio have been examined. The result shows that the noise level is crucial to evalute the instantaneous frequency analysis. In order to implement the instantaneous frequency analysis, the extraction of the relevant information from the measured signal should have the high S/N ratio, i, e., 40 dB or above.

원료불출기의 역기구학: 여유자유도와 구속조건을 이용한 닫힌 형태의 해 (Inverse kinematics of a Reclaimer: Redundancy and a Closed- Form Solution by Exploiting Geometric Constraints)

  • Hong, K.S.;Kim, Y.M.;Shin, K.T.
    • 한국정밀공학회지
    • /
    • 제14권7호
    • /
    • pp.144-153
    • /
    • 1997
  • The inverse kinematics problem of a reclaimer which excavates and transports raw materials in a raw yard is investigated. Because of the geometric feature of the equipment in which scooping buckets are attached around the rotating disk, kinematic redundancy occurs in determining joint variable. Link coordinates are introduced following the Denavit-Hartenbery representation. For a given excavation point the forward kinematics yields 3 equations, however the number of involved joint variables in the equations is four. It is shown that the rotating disk at the end of the boom provides an extra passive degree of freedom. Two approaches are investigated in obtaining inverse kinematics solutions. The first method pre-assigns the height of excavation point which can be determined through path planning. A closed form solution is obtained for the first approach. The second method exploits the orthogonality between the normal vector at the excavation point and the z axis of the end-effector coordinate system. The geometry near the reclaiming point has been approximated as a plane, and the plane equation has been obtained by the least square method considering 8 adjacent points near the point. A closed form solution is not found for the second approach, however a linear approximate solution is provided.

  • PDF

Spatial Compounding of Ultrasonic Diagnostic Images for Rotating Linear Probe with Geometric Parameter Error Compensation

  • Choi, Myoung Hwan;Bae, Moo Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1418-1425
    • /
    • 2014
  • In ultrasonic medical imaging, spatial compounding of images is a technique where ultrasonic beam is steered to examine patient tissues in multiple angles. In the conventional ultrasonic diagnostic imaging, the steering of the ultrasonic beam is achieved electronically using the phased array transducer elements. In this paper, a spatial compounding approach is presented where the ultrasonic probe element is rotated mechanically and the beam steering is achieved mechanically. In the spatial compounding, target position is computed using the value of the rotation axis and the transducer array angular position. However, in the process of the rotation mechanism construction and the control system there arises the inevitable uncertainties in these values. These geometric parameter errors result in the target position error, and the consequence is a blurry compounded image. In order to reduce these target position errors, we present a spatial compounding scheme where error correcting transformation matrices are computed and applied to the raw images before spatial compounding to reduce the blurriness in the compounded image. The proposed scheme is illustrated using phantom and live scan images of human knee, and it is shown that the blurriness is effectively reduced.

디지털 필터를 이용한 단일 스탠드 압연기의 편심 진단 알고리즘 (An Algorithm of Diagnosing Eccentricity in Single Stand Rolling Mill)

  • 전재영;김현승;이해영
    • 조명전기설비학회논문지
    • /
    • 제15권1호
    • /
    • pp.59-69
    • /
    • 2001
  • 본 논문에서는 압연공정에서 편심을 검출하고 편심의 원인을 진단할 수 있는 알고리즘을 제안한다. 설계된 기법은 대부분의 압연공정에 이미 설치되어 있는 로드셀과 타코메타의 출력 신호만을 사용하며, 추가적인 센서를 필요로 하지 않는다. 편심 신호의 검출은 중심주파수가 회전속도에 따라 변화하는 6개의 디지털 대역 통과 필터의 출력을 조합하여 이루어진다. 추출된 편심 관련 데이터로부터 편심의 원인을 진단하는 기능은 적절한 변수를 정의하여 구현되었다. 모의 실험은 세 가지 경우에 대해 행해졌는데, 롤의 일부분이 마모된 경우, 회전축이 롤의 중심과 일치하지 않는 경우 및 두 가지 원인이 복합된 경우 등이다. 모의 실험 결과는 제안된 알고리즘에 의해 모든 경우에 편심의 진단이 가능함을 보여준다.

  • PDF

비대칭 Groove를 이용한 FDB 회전축의 기울기 보상 (Compensation of Inclined Rotating Axis Using Unsymmetric Groove Patterns)

  • 이남훈;한재혁;오동호;김철순;변용규;구자춘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.582-585
    • /
    • 2004
  • Most of hard disk drives currently employ fluid dynamic bearing (FDB) for their rotor support. Stiffness of the FDB is affected by many design factors such as bearing clearance, fluid viscosity, and rotational speed. For the high rotating speed HDDs stiffness of the rotor is normally high enough to accomodate load disturbances. However small form factor HDDs that are to be operated in low power consumption are often designed with low stiffness rotors. Although the low stiffness rotor clearly benefits low power operation, it could damage the entire motor structure or head disk interface even by a light mechanical load disturbance such as shock or vibration. In addition, since a single channel HDD does not provide gram load equilibrium in axial direction the rotor could be tilted and make a hard contact to stator. A non-symmetric groove pattern could successfully compensate the tilted rotor angle during operation.

  • PDF

Capabilities of 1D CUF-based models to analyse metallic/composite rotors

  • Filippi, Matteo;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • 제3권1호
    • /
    • pp.1-14
    • /
    • 2016
  • The Carrera Unified Formulation (CUF) is here extended to perform free-vibrational analyses of rotating structures. CUF is a hierarchical formulation, which enables one to obtain refined structural theories by writing the unknown displacement variables using generic functions of the cross-section coordinates (x, z). In this work, Taylor-like expansions are used. The increase of the theory order leads to three-dimensional solutions while, the classical beam models can be obtained as particular cases of the linear theory. The Finite Element technique is used to solve the weak form of the three-dimensional differential equations of motion in terms of "fundamental nuclei", whose forms do not depend on the adopted approximation. Including both gyroscopic and stiffening contributions, structures rotating about either transversal or longitudinal axis can be considered. In particular, the dynamic characteristics of thin-walled cylinders and composite blades are investigated to predict the frequency variations with the rotational speed. The results reveal that the present one-dimensional approach combines a significant accuracy with a very low computational cost compared with 2D and 3D solutions. The advantages are especially evident when deformable and composite structures are analyzed.

Study of a vibrating propulsion system for marine vessels: Evaluation of the efficiency for a boat 13 m long

  • Muscia, Roberto
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권2호
    • /
    • pp.201-211
    • /
    • 2018
  • This paper illustrates recent advancements relative to a non-conventional propulsion system for boats and is based on two previous papers of the author presented at a conference (see Muscia, 2015a,b). The system does not consider propellers and utilizes the vibration generated by two or more pairs of counter rotating masses. The resultant of the centrifugal forces applies an alternate thrust to the hull that oscillates forward and backward along the longitudinal axis of the boat. The different hydrodynamic drag forces that oppose to the oscillation produce a prevalently forward motion of the vessel. The vibration that causes the motion can be suitably defined to maximize the forward displacement and the efficiency propulsion of the system. This result is obtained by using elliptical gears to rotate the counter rotating masses. The computation of the propulsion efficiency is based on a suitable physical mathematical model. Correlations between numerical experiments on models and possible full scale application are discussed. Some remarks in relation to practical applications and critical issues of the propulsive solution are illustrated. The results have been obtained with reference to a CAD model of a real boat already manufactured whose length is approximately equal to 13 m.

고효율 회전 집광형 하이브리드 태양광 LED 가로등 모듈 시스템 연구 (A study of high-efficiency rotating condensing hybrid solar LED street light module system)

  • 민경호;전용한
    • Design & Manufacturing
    • /
    • 제15권3호
    • /
    • pp.50-55
    • /
    • 2021
  • Solar power generation, which is one of the methods of using solar energy, has a high possibility of practical implementation compared to other renewable energy power generation, and it has the characteristic that it can generate as much power as needed in necessary places. In addition, maintenance is easy, unmanned operation is possible, and power management can be performed more efficiently if operated in a hybrid method with existing electric energy. Therefore, in this study, numerical analysis using a computer program was performed to analyze the efficient operation and performance improvement of solar energy of the rotating condensing type solar LED street lamp. As a result, the two-axis tracking type could obtain 15.23 % more electricity per year than the fixed type, and additional auxiliary power generation was required for the fixed type by 19 % per year than the tracking type. As a result of computational fluid dynamics(CFD) simulation for PV module surface temperature prediction, the The surface temperature of the Photovoltaics(PV) module incident surface was predicted to be about 10℃ higher than that of the fixed type.