• Title/Summary/Keyword: Rotating System

Search Result 1,760, Processing Time 0.027 seconds

Rotating-Gantry-Based X-Ray Micro-Tomography System with the Sliding Mechanism Capable of Zoom-In Imaging

  • Cho, Min-Hyoung;Lee, Dong-Hun;Han, Byung-Hee;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.107-113
    • /
    • 2008
  • We introduce a rotating-gantry-based x-ray micro-tomography system to be used for small animal imaging studies. It has the zoom-in imaging capability for high resolution imaging of a local region inside the animal subject without any contrast anomalies arising from truncation of the projection data. With the sliding mechanism mounted on the rotating gantry holding the x-ray source and the x-ray detector, we can control the magnification ratio of the x-ray projection data. By combining the projection data from the large field of view (FOV) scan of the whole animal subject and the projection data from the small FOV scan of the region of interest, we can obtain artifact-free zoomed-in images of the region of interest. For the acquisition of x-ray projection data, we use a $1248{\times}1248$ flat-panel x-ray detector with the pixel pitch of 100 mm. It has been experimentally found that the developed system has the spatial resolution of up to 121p/mm when the highest magnification ratio of 5:1 is applied to the zoom-in imaging. We present some in vivo rat femur images to demonstrate utility of the developed system for small animal imaging.

ASYMPTOTIC STUDY OF MIXED ROTATING MHD SYSTEM

  • Selmi, Ridha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.231-249
    • /
    • 2010
  • Asymptotic behavior of three-dimensional mixed, periodic and rotating magnetohydrodynamic system is investigated as the Rossby number goes to zero. The system presents the difficulty to be singular and mixed, that is hyperbolic in the vertical direction and parabolic in the horizontal one. The divergence free condition and the spectral properties of the penalization operator are crucial in the proofs. The main tools are the energy method, the Schochet's method and products laws in anisotropic Sobolev spaces.

Development of a Wireless Acoustic Emission System for the Monitoring of Rotating Structures (회전기 진단을 위한 무선식 AE 측정장치 개발)

  • Kwon, O.Y.;Kim, Y.H.;Yoon, D.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.11 no.2
    • /
    • pp.15-21
    • /
    • 1991
  • A wireless acoustic emission (AE) system has been developed for continuous monitoring of rotating structures such as turbine rotors. The cable between preamplifier and signal processing unit of a conventional AE system was replaced by the frequency modulated telemetry. The detected signals were modulated and transmitted as an RF signals by the transmitting module, then received and demodulated by the receiving module. The distance between the transmitting and the receiving antennas could be separated up to 10cm within a reasonable signal-to-noise ratio. The simulated AE signals generated by pencil lead breaks from rotating structures were successfully detected using the developed wireless AE monitoring system.

  • PDF

Modal Analysis of a Rotating Multi-Packet Pre-twisted Blade System (초기 비틀림각을 갖는 회전하는 다중 패킷 블레이드 시스템의 고유 진동 해석)

  • Kim, Min-Kwon;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.393-399
    • /
    • 2008
  • A modeling method for the modal analysis of a pre-twisted multi-packet blade system undergoing rotational motion is presented in this paper. Blades are idealized as pre-twisted cantilever beams that are fixed to a rotating disc. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. The coupling effect between chordwise and flapwise bending deflection is also considered. Hybrid deformation variables are employed to derive the equations of motion. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters and the number of packets as well as blades on the modal characteristics of the rotating multi-packet pre-twisted blade system are investigated with some numerical examples.

  • PDF

A Vibration Characteristic Research of Rotor-Magnetic Bearing System Measured by Capacitance Type Sensors (캐패시턴스형 센서를 사용한 자기베어링-축계의 진동특성 연구)

  • 이상호;정성천;장인배;한동철
    • Tribology and Lubricants
    • /
    • v.10 no.4
    • /
    • pp.27-32
    • /
    • 1994
  • The capacitive type transducers measure the displacement of rotating shaft using the voltage difference which is formed between the sensor plates and rotor so that the measured signal is not affected by the magnetic field generated by the magnetic bearing. In this paper, the capacitive transducers are embedded inside of the magnetic bearing. In order to verify the support characteristics of the capacitance sensor-magnetic bearing system, we experimented and analyzed the magnetic bearing-rotating shaft system up to 12,000 rpm. The magnetic bearing system proposed in this paper, successfully supports the rotating shaft and we can remain the maximum displacement below $5 \mu m$ at 12,000 rpm.

Stability Analysis of Rotating Discs Due to Head interference (헤드간섭으로 인한 회전 디스크의 안정성 분석)

  • 임경화
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.865-872
    • /
    • 2000
  • This paper presents the modeling, theoretical formulation, and stability analysis for a combined system of a spinning disc and a head that contacts the disc. In the analytic model, head interference is considered by a rotating mass-spring-damper system together with a frictional follower force on the damped annular discs. The multiple scale method is utilized to perform the stability system that shows the existence of instability associated with parametric resonances. Using the formulated system , instability regions of optical recording disc are investigated with variation of mass, stiffness and friction force of a head, respectively. The simulation results show that the stiffness of a head is the most sensitive parameter on the instability of the disc.

  • PDF

Study on the Contra-Rotating Propeller system design and full-scale performance prediction method

  • Min, Keh-Sik;Chang, Bong-Jun;Seo, Heung-Won
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.29-38
    • /
    • 2009
  • A ship's screw-propeller produces thrust by rotation and, at the same time, generates rotational flow behind the propeller. This rotational flow has no contribution to the generation of thrust, but instead produces energy loss. By recovering part of the lost energy in the rotational flow, therefore, it is possible to improve the propulsion efficiency. The contra-rotating propeller (CRP) system is the representing example of such devices. Unfortunately, however, neither a design method nor a full-scale performance prediction procedure for the CRP system has been well established yet. The authors have long performed studies on the CRP system, and some of the results from the authors' studies shall be presented and discussed.

Fatigue Safe Life Evaluation of Rotating Swashplate of Helicopter Main Rotor Control System (헬리콥터 주로터 조종 시스템 회전형 스와시플레이트 피로 안전수명 평가)

  • Kim, Dong-Chul;Lee, Pan-Ho;Kang, Shin-Hyun;Choi, Young-Don;Kim, Tae-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.203-210
    • /
    • 2012
  • The main rotor control system is an important structural part of a helicopter that manages the thrust and control force of the helicopter. The main rotor control system consists of a swashplate assembly, scissor assembly, pitch rod assembly, guide, etc. The main rotor control system must endure various loads, such as the thrust and control force, and must meet the optimized fatigue safety life. The rotating swashplate is an important structure influenced by the pitch rod load and rotating scissor load. In this paper, the accuracy of a result about the rotating swashplate part of the main rotor control system is proven through comparison between fatigue test and FEM results. Based on this result, we estimate the lifetime and deduce the fatigue safe lifetime.

Aerodynamic Performance Prediction of a Counter-rotating Wind Turbine System with Wake Effect (후류영향을 고려한 상반회전 풍력발전 시스템의 공력성능 예측에 관한 연구)

  • Dong, Kyung-Min;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.20-28
    • /
    • 2002
  • In this paper, the aerodynamic performance prediction of a 30kW counter-rotating (C/R) wind turbine system has been made by using the momentum theory as well as the two-dimensional quasi-steady strip theory with special care on the wake and the post-stall effects. In order to take into account the wake effects in the performance analysis, the wind tunnel test data obtained for a scaled blade are used. Both the axial and rotational inductions behind the auxiliary rotors are determined through the wake model. In addition, the optimum chord and twist distributions along the blades are obtained from the Glauert's optimum actuator disk model considering the Prandtl's tip loss effect. The performance results of the counter-rotating wind turbine system are compared with those of the conventional single rotor system and demonstrated the effectiveness of the counter-rotating wind turbine system.

A Study of Ignition Performance on the Annular Combustor with Rotating Fuel Injection System (회전분무시스템을 가진 환형연소기의 점화성능 연구)

  • Lee, Gang-Yeop;Lee, Dong-Hun;Choe, Seong-Man;Park, Jeong-Bae;Kim, Hyeong-Mo;Park, Yeong-Il;Go, Yeong-Seong;Han, Yeong-Min;Yang, Su-Seok;Lee, Su-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.60-65
    • /
    • 2003
  • An experimental study was performed to understand ignition characteristics of gas turbine combustor with rotating fuel injection system. Liquid fuel applied to the inner surface of rotating fuel nozzle which was driven by high speed electrical motor is flung away by centrifugal forces. The real scale combustor and test rig was manufactured and tested under atmospheric condition in KARl combustion test facility. From the test results, this combustor ignition characteristics are highly dependent upon fuel nozzle rotating speed. Futhermore, combustor exit gas temperature was rapidly changed by increasing or decreasing the fuel nozzle rotating speed.