DOI QR코드

DOI QR Code

Rotating-Gantry-Based X-Ray Micro-Tomography System with the Sliding Mechanism Capable of Zoom-In Imaging

  • Cho, Min-Hyoung (Department of Biomedical Engineering, Kyung Hee University) ;
  • Lee, Dong-Hun (Department of Biomedical Engineering, Kyung Hee University) ;
  • Han, Byung-Hee (Department of Biomedical Engineering, Kyung Hee University) ;
  • Lee, Soo-Yeol (Department of Biomedical Engineering, Kyung Hee University)
  • Published : 2008.04.30

Abstract

We introduce a rotating-gantry-based x-ray micro-tomography system to be used for small animal imaging studies. It has the zoom-in imaging capability for high resolution imaging of a local region inside the animal subject without any contrast anomalies arising from truncation of the projection data. With the sliding mechanism mounted on the rotating gantry holding the x-ray source and the x-ray detector, we can control the magnification ratio of the x-ray projection data. By combining the projection data from the large field of view (FOV) scan of the whole animal subject and the projection data from the small FOV scan of the region of interest, we can obtain artifact-free zoomed-in images of the region of interest. For the acquisition of x-ray projection data, we use a $1248{\times}1248$ flat-panel x-ray detector with the pixel pitch of 100 mm. It has been experimentally found that the developed system has the spatial resolution of up to 121p/mm when the highest magnification ratio of 5:1 is applied to the zoom-in imaging. We present some in vivo rat femur images to demonstrate utility of the developed system for small animal imaging.

Keywords

References

  1. M.G. Pomper, 'Molecular imaging: an overview, Acad. Radiol., vol. 8, pp. 1141-1153, 2001 https://doi.org/10.1016/S1076-6332(03)80728-6
  2. R. Weissleder, and U. Mahmood, 'Molecular imaging,' Radiology, vol. 219, pp. 316-333, 2001 https://doi.org/10.1148/radiology.219.2.r01ma19316
  3. T.F. Massoud, and S.S. Gambhir, 'Molecular imaging in living subject: seeing fundamental biological processes in a new light,' Genes & Development, vol. 17, pp. 545-580, 2003 https://doi.org/10.1101/gad.1047403
  4. M.J. Paulus, H. Sari-Sarraf, S.S. Gleason, M. Bobrek, J.S. Hicks, D.K. Johnson, J.K. Behel, L.H. Thompson, and W.C. Allen, 'A new x-ray computed tomography system for laboratory mouse imaging,' IEEE. Trans. Nucl. Sci., vol. 46, pp. 558-564, 1999 https://doi.org/10.1109/23.775579
  5. M.J. Paulus, S.S. Gleason, H. Sari-Sarraf, D.K. Johnson, C.J. Foltz, D.W. Austin, M.E. Easterly, E.J. Michaud, M.S. Dhar, P.R. Hunsicker, J.W. Wall, and M. Schell, 'High-resolution x-ray CT screening of mutant mouse models,' in Proc. SPIE, San Jose, CA, USA, Jan, 2000, vol. 3291, pp. 270-279
  6. S.Y. Wan, A.P. Kiraly, E.L. Ritman, and W.E. Higgins,' Extraction of the hepatic vasculature in rats using 3-D micro-CT images,' IEEE. Trans. Med. Imag., vol. 19, pp. 964-971, 2000 https://doi.org/10.1109/42.887843
  7. E.L. Ritman,'Molecular imaging in small animals-roles for micro-CT,' J. Cell. Biochem. Supp., vol. 39, pp. 116-124, 2002
  8. R.D. Kapadia, G.B. Stroup, A.M. Badger, B. Koller, J.M. Levin, R.W. Coatney, R.A. Dodds, X. Liang, M.W. Lark, and M. Gowen, 'Application of micro-CT and MR microscopy to study pre-clinical models of osteoporosis and osteoarthritis,' Technol. Health Care, vol. 6, pp. 361-372, 1998
  9. I.K. Chun, M.H. Cho, J.H. Park, and S.Y. Lee, 'In vivo trabecular thickness measurement in cancellous bones: longitudinal rat imaging studies,' Physio. Meas., vol. 27, pp. 695-702, 2006 https://doi.org/10.1088/0967-3334/27/8/004
  10. S.M. Jorgensen, O. Demirkaya, and E.L. Ritman, 'Three-dimensional imaging of vasculature and parenchyma in intact rodent organs with x-ray micro-CT,' Am. J. Physiol., vol. 275, pp. H1103-1114, 1998
  11. D.A. Jaffray, and J.H. Siewerdsen, 'Cone-beam computed tomography with a flat-panel imager: initial performance characterization,' Med. Phys., vol. 27, pp. 1311-1123, 2000 https://doi.org/10.1118/1.599009
  12. S.C. Lee, H.K. Kim, I.K. Chun, M.H. Cho, S.Y. Lee, and M.H. Cho, 'A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging,' Phys. Med. Biol., vol. 48, pp. 4173-4185, 2003 https://doi.org/10.1088/0031-9155/48/24/014
  13. W.C. Phillips, M. Stanton, A. Stewart, H. Qian, C. Ingersoll, and R.M. Sweet, 'Multiple CCD detector for macromolecular x-ray crystallography,' J. Appl. Cryst., vol. 33, pp. 243-251, 2000 https://doi.org/10.1107/S0021889899015666
  14. I.K. Chun, M.H. Cho, S.C. Lee, M.H. Cho, and S.Y. Lee, 'X-ray micro-tomography system for small-animal imaging with zoomin imaging capability,' Phys. Med. Biol., vol. 49, pp. 3889-3902, 2004 https://doi.org/10.1088/0031-9155/49/17/005
  15. L.A. Feldkamp, L.C. Davis, and J.W. Kress, 'Practical conebeam algorithm,' J. Opt Soc. Am. A, vol. 1, pp. 612-619, 1984 https://doi.org/10.1364/JOSAA.1.000612
  16. D.W. Holdsworth, M. Drangova, and A. Fenster, 'A highresolution XRII-based quantitative volume CT scanner,' Med. Phys., vol. 20, pp. 449-462, 1993 https://doi.org/10.1118/1.597038
  17. S.Y. Wan, E.L. Ritman, and W.E. Higgins, 'Multi-generational analysis and visualization of the vascular tree in 3D micro-CT images,' Comput. Biol. Med., vol. 32, pp. 55-71. 2002 https://doi.org/10.1016/S0010-4825(01)00034-8
  18. A.A. Kurth, and R. Muller, 'The effect of an osteolytic tumor on the three-dimensional trabecular bone morphology in an animal model,' Skeletal Radiol., vol. 30, pp. 94-98, 2001 https://doi.org/10.1007/s002560000287