• Title/Summary/Keyword: Rotating Radius

Search Result 157, Processing Time 0.033 seconds

Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams (회전하는 보의 유한요소해석을 위한 유리형상함수의 확장)

  • Kim, Yong-Woo;Jeong, Jae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.573-578
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfies the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfies the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beam.

  • PDF

Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams (회전하는 보의 유한요소해석을 위한 유리형상함수의 확장)

  • Kim, Yong-Woo;Jeong, Jae-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.591-598
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfy the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfy the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beams.

Steady and Unsteady Rotating Flows between Concentric Cylinders (동심원 환내의 정상.비정상 회전 유동)

  • 심우건
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.613-620
    • /
    • 1997
  • Steady and unsteady flows between rotating cylinders are of interest on lubrication, convective heat transfer and flow-induced vibration in large rotating machinery. Steady rotating flow is generated by rotating cylinder with constant velocity while the unsteady rotating flow by oscillating cylinder with homogeneoysly oscillating velocity. An analytical method is developed based on the simple radial coordinate transformation for the steady and unsteady rotating flows in concentric annulus. The governing equations are simplified from Navier-Stokes equatins. Considering the skin friction based on the radial variation of circumferential flow velocity, the torques acting on the fixed and the rotating cylinder are evaluated in terms of added-inertia and added-damping torque coefficients. The coefficients are found to be influenced by the oscillatory Reynolds number and the radius ratio of two cylinders; however, the effect of the oscillatory Reynolds number on the coefficients is minor in case of relatively low radius ratio.

  • PDF

The Lubrication Characteristics According to the Rotating Radius of Piston in a Swash-Plate Type Piston Pump (사판식 피스톤 펌프의 피스톤 회전 반경에 따른 윤활 특성)

  • Cho, Ihn Sung;Jung, Jae Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.749-753
    • /
    • 2013
  • Hydraulic systems are used to transform mechanical energy and fluid energy into each other. Its applications are very wide over the whole industries such as automobiles, public works, rockets, machine tools, construction heavy equipments, airplaces and so on. They are hydraulic pumps that transform energy in the systems. In this study, with basic operation principles as a start point, I tried to understand how the rotating radius of a piston affects the lubrication characteristics in more practical conditions, a swash-plate with tilt angle zero capable of rotating motion and other devices was used. In this paper, a slipper was located on 45mm eccentricity from the center of a swash-plate. As a result, through this experiment, it was found that the rotating radius of a piston affects load capacity, leakage flow and lubrication characteristics and it is one of the important parts for improving the pump efficiency.

A STUDY ON TAYLOR FLOW ACCORDING TO RADIUS RATION AND ANGULAR VELOCITY (반경비 및 각속도의 변화에 따른 Taylor 유동에 관한 연구)

  • Bae, K.Y.;Kim, H.B.;Chung, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.127-133
    • /
    • 2007
  • This paper represents the numerical study on Taylor flow according to the radius ratio and the angular velocity for flow between tow cylinder. The numerical model is consisted of two cylinder which inner cylinder is rotating and outer cylinder is fix, and the axial direction is used the cyclic condition because of the length for axial direction is assumed infinite. The diameter of inner cylinder is assumed 86.8 mm, the numerical parameters are angular velocity and radius ratio. The numerical method is compared with the experimental results by Wereley, and the results are very good agreement. The critical Taylor number is calculated by theoretical and numerical analysis, and the results is showed the difference about ${\pm}10\;%$. As $Re/Re_c$ is increased, Taylor vortex is changed to wavy vortex, and then the wave number for azimuthal direction is increased. Azimuthal wave according to the radius ratio is showed high amplitude and low frequence in case of small radius ratio, and is showed low amplitude and high frequence in case of large radius ratio.

  • PDF

A study on the vibration and the stress measurement of thin rotating discs (얇은 회전원판의 진동, 응력계측에 관한 연구)

  • 한응교;이명호;손민호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.34-41
    • /
    • 1991
  • In this study, the equations of motion of the thin annular plate with uniform thickness were derived from the classical theory of the plate. In addition the distribution of the inplane stress and the natural frequency due to the change of the ratio of the outer radius to the inner radius was presented by the analytic method using the numerical analysis. Results were compared with those from the experiment. As a result, the strain of rotating circular plate increased as the radius and rpm became greater, and the strain of radial direction was two times greater than that of transverse direction. Besides, it was confirmed that the natural frequency increased according to the decrease of the radius keeping the thickness constant.

  • PDF

Computer visualization approach for rotating FG shell: Assessment with ring supports

  • Al Thobiani, Faisal;Khadimallah, Mohamed A.;Hussain, Muzamal;Mohamed, Gar Al-Nabi Ibrahim;Ghandourah, Emad
    • Computers and Concrete
    • /
    • v.28 no.6
    • /
    • pp.559-566
    • /
    • 2021
  • In this paper, frequency analysis has been done for functionally graded cylindrical shell with ring supports using Sander's shell theory. The vibrations of rotating cylindrical shells are analyzed for different physical factors. The fundamental natural frequency is investigated for different parameters such as: ratios of length-to-diameter ring supports. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing height-to-radius ratio. The frequencies for different position of ring supports are obtained in the form of bell shaped. The backward frequencies increases and forward frequencies decrease on increasing the rotating speed. The results generated furnish the evidence regarding applicability of present shell model and also verified by earlier published literature.

Numerical Analysis on Effects of Radius Ratio in a Concentric Annulus with a Rotating Inner Cylinder (내부회전실린더를 가진 동심환형관에서 반경비의 영향에 관한 수치해석적 연구)

  • Bae, Kang-Youl;Kim, Hyoung-Bum;Lee, Sang-Hyuk
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.327-330
    • /
    • 2006
  • This paper represents the numerical analysis on effects of radius ratio in a concentric annulus with a rotating inner cylinder. The numerical model consisted of two cylinder which inner cylinder is rotating and outer cylinder is fix, and the axial direction is used the cyclic condition because of the length for axial direction is assumed infinite. The diameter of inner cylinder is assumed 86.8mm, the numerical parameters are angular velocity and radius ratio. Also, the whole walls of numerical model have no-slip and the working fluid is used water at $20^{\circ}C$. The numerical analysis is assumed the transient state to observe the flow variations by time and the 3-D cylindrical coordinate system. The calculation grid adopted a non-constant grid for dense arrangement near the wall side of cylinder, the standard $k-{\omega}$ high Reynolds number model to consider the effect of turbulence flow and wall, the fully implicit method for time term and the quick scheme for momentum equation. The numerical method is compared with the experimental results by Wereley and Lueptow, and the results are very good agreement. As the results, TVF isn't appeared when Re is small because of the initial flow instability is disappear by effect of the centrifugal force and viscosity. The vortex size is from 0.8 to 1.1 for TVF at various $\eta$, and the traveling distance for wavy vortex have the critical traveling distance for each case.

  • PDF

Vibration Analysis of Rotating Cantilever Plates with a Concentrated Mass (집중 질량을 가진 회전하는 외팔 평판의 진동 해석)

  • 양정식;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.181-186
    • /
    • 1998
  • A modelling method for the vibration analysis of rotating cantilever plates with a concentrated mass is presented. The equations of motion for the rotating plates with a concentrated mass located in an arbitrary position are derived. For the modelling of the concentrated mass, a mass density Dirac delta function is used. The effects of concentrated mass and its location, angular speed, and hub radius of the rotating plate on the natural frequencies are studied. Particularly, mode shape variations due to some parameter variations are investigated.

  • PDF

Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect (연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석)

  • Lim, Ha-Seong;Kwon, Sung-Hun;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.912-918
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.