• Title/Summary/Keyword: Rotary work

Search Result 115, Processing Time 0.026 seconds

Comparison of Work Performance of Crank-type and Rotary-type Rotavators in Korean Farmland Conditions

  • Nam, Ju-Seok;Kang, Dae-Sig;Kang, Young-Sun;Kim, Kyeong-Uk;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.140-147
    • /
    • 2012
  • Purpose: This study was conducted to understand the work performance of crank-type rotavators and compare them with those of rotary-type rotavators in Korean farmland conditions. Methods: Tillage operations were carried out using both rotavators with the same nominal rotavating width and rated power. During the operations, PTO speed and torque, actual work speed, and rotavating width and depth were measured. To evaluate work performance, pulverizing ratio, inversion ratio, and specific volumetric tilled soil were calculated and compared for each rotavator. Results: It is found that the crank-type rotavator has better specific volumetric tilled soil performance and deep tillage, while the pulverizing ratio is worse. Conclusions: Crank-type and rotary type rotavator have diffenent properties each other in several work performances. It's important, therefore, to choose a suitable type of rotavator that satisfy the farmer's requirements in accordance with the condition of field and the purpose of tillage operation.

Analysis of Work Load for Developing the Control Strategy of Hybrid Agricultural Tractor (하이브리드 농업용 트랙터의 제어 전략 개발을 위한 작업 부하 분석)

  • Kim, Jinseong;Park, Yeongil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.239-245
    • /
    • 2015
  • In order to control the hybrid power system efficiently, the knowledge for the required load of the system is important. The agricultural tractor performs various farm works such as plow, rotary, and baler. When it performs rotary tillage and baler operation, the generated work load is analyzed. To analyze trend of work load, moving average technique is applied to the measurement data. Optimal control inputs for the two works are obtained from simulation using the dynamic programming. The novel fundamental control strategy for parallel hybrid tractor called Max. SOC is proposed.

Motion Analysis of Conventional Rotary Blades (기존 트랙터 로터리날의 운동분석)

  • Lee, Hyun-Dong;Kim, Ki-Dae;Kim, Chan-Soo;Kim, Sung-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.31 no.1
    • /
    • pp.26-34
    • /
    • 2004
  • In this study, motion characteristics and power requirement of rotary tilling according to shape of conventional rotary blade were measured. This study was performed to establish factors which needed to develop energy saving rotary blade. Starting point of edged curve of imported rotary blade was faster than that of domestic rotary blade after measuring and analyzing edged curve of rotary blade. So domestic rotary blade tills much soil than imported rotary blade. In analyzing motion of rotary blade, Rotary blade of A, D type was begun to contact at part 3. Analyzing back surface of rotary blade which contact to soil at critical $\lambda$ results in contacting at e-f part. In measuring power requirement of rotary blade, specific torque and specific work of rotary blade are $160{\sim}170kgf{\cdot}m/m^2$, $3,700kgf{\cdot}m/m^3$. It shows power requirement of rotary blade according to shape of rotary blade are very different.

  • PDF

Optimization of Cement Manufacturing Process for Heat Source Application of Automobile Shredder Residue (자동차 폐차잔재(ASR)의 시멘트제조 열원활용공정의 최적화)

  • Oh, Sea-Cheon;Kwon, Woo-Teck;Kim, Soo-Ryong
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.81-86
    • /
    • 2008
  • Rotary kiln in cement work has been evaluated for a wide variety of organic wastes such as wood, used tyres, plastic wastes and automobile shredder residue (ASR). However the presence of chlorine hampers the use of ASR as fuel in rotary kiln. Therefore, the behavior characteristics of chlorine components in rotary kiln should be considered to develop an effective method for ASR treatment to recovery energy resources. The aim of this paper is to present the chlorine control system applied to a cement manufacturing process for ASR use as an alternative fuel. In this work, the simulation of bypass unit and cyclones for chlorine control in rotary kiln has been studied and compared with the operation results of field test.

  • PDF

Modelling and Simulation of Rotary Compressor in Refrigerator (냉동기용 로터리 압축기의 모델링 및 시뮬레이션)

  • Park, Min-Woo;Chung, Youn-Goo;Park, Kyoung-Woo;Pak, Hi-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.39-49
    • /
    • 2000
  • This paper presents the modeling approach that can predict transient behavior of rotary compressor. Mass and energy conservation laws are applied to the control volume, real gas state equation is used to obtain thermodynamic properties of refrigerant. The valve equation is solved to analyze discharge process also. Dynamic analysis of vane and roller is carried out to gain friction work. From the above modeling, the performance of rotary compressor with radial clearance and friction loss is investigated numerically. The performance of each refrigerant is estimated, respectively by applying R12, R134a, and R290/ R600a mixture.

Study of of Flexible Multibody Dynamics with Rotary Inertia (회전관성 효과를 고려한 탄성 다물체 동력학에 관한 연구)

  • 김성수
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.287-296
    • /
    • 1996
  • A virtual work form of flexible multibody dynamic formulation with rotary inertia has been derived. For the analysis of large flexible multibody systems, deformation modal coordinates have been employed to represent coupled motion between gross and vibrational motion. For the efficient evaluation of the entries in the mass matrix, a flexible body has been treated as a collection of mass points. The rotary inertia was generated from the consistent mass matrix in a finite element model. Deformation mode shapes were obtained from finite element analysis. Bending and twisting vibration analyses of a cantilever have been carried out to see rotary inertia effects. A space flexible robot simulation has been also carried out to show effectiveness of the proposed formulation. This formulation is effective to the model that consists of beam, plate, or shell element that contains rotational degree of freedom at the nodal point. It is also effective to the flexible body model to which a large lumped rotary inertia is attached.

  • PDF

Consumed-Power and Load Characteristics of a Tillage Operation in an Upland Field in Republic of Korea

  • Kim, Jeong-Gil;Kim, Young-Joo;Kim, Jung-Hun;Shin, Beom-Soo;Nam, Ju-Seok
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.83-93
    • /
    • 2018
  • Purpose: This study derived the consumed power and load characteristics of a tillage operation performed in an upland field located in Seomyeon, Chuncheon, Rep. Korea, where potatoes and cabbages were cultivated in two crops. Methods: A plow and rotavator were mounted on a tractor with 23.7 kW of rated power to perform the tillage operation. The work conditions were determined, considering the actual working speed of the tillage operation performed by the local farmers. The power consumption of the rear axle, engine, and power take-off (PTO), PTO torque, and tractive force were measured under each work condition. The consumed power and load characteristics were analyzed using their average values. Results: The rotary-tillage operation consumed more engine power than the plow operation for the same tractor-transmission gear condition. The PTO in the rotary-tillage operation and the rear axle in the plow operation consumed the most power. The power consumption of the engine and the PTO for the rotary-tillage operation tended to increase as the transmission gears of the tractor and the PTO became higher. In contrast, the rear-axle power consumption was insignificant. In addition, the PTO torque tended to rise as the tilling pitch increased. For the plow operation, the drawbar power and the rear axle power accounted for 68-90% of the engine power. The engine and rear axle power, drawbar power, and tractive force tended to rise as the working speed increased. Conclusions: The power consumption and load characteristics differed for the plow and rotary-tillage operations. They may also differ depending on the soil conditions. Therefore, the power consumption and load characteristics in various work environments and regions should be analyzed, and reflected in the design of tractors and working implements. The results derived from this study can be used as a reference for such designs.

A Study on Transient Chip Formation in Cutting with Self-Propelled Rotary Tools-Experimental Verification (자기추진 로타리 공구를 사용한 절삭에서 천이칩 형성에 관한 연구 - 실험에 의한 증명)

  • 최기흥;최기상;김정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1910-1920
    • /
    • 1993
  • An experimental study to investigate the unconventional chip formation called triangulation of chip in cutting with a SPRT (self-propelled rotary tool) is performed using acoustic emission (AE) signal analysis. In doing that, a quantitative model of the AE RMS signal in triangulation with a SPRT is first developed. The predicted results from this model show good correlation between the AE RMS signal and the general characteristics of triangular chip formation. Then, effects of various process parameters such as cutting conditions (cutting speed, depth of cut, oblique angle and normal rake angle) and the work material properties on the chip formation in cutting with a SPRT are explored. Special attention is paid to the work material properties which are found to have significant effects on triangulation.

The Cutting Characteristics of Rotary Tools Using Regression Analysis (회귀분석법을 이용한 로타리 공구의 절삭 특성)

  • 심승천;장성민;맹민재;정준기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.105-110
    • /
    • 2004
  • This paper deals with the study of feasibility of rotary carbide tools in the machining of aluminium alloy. A rotary tool holder was designed and manufactured for this work. Experiments were performed using Taguchi methods and regression analysis to analyse the influence of various factors and their interactions on the cutting characteristics of rotary carbide tools during machining. The cutting force is influenced the most featly at the inclination angle. The surface roughness is influenced distinctly at depth of cut. It deduced an equation to predict cutting force and surface roughness. Hence, it could be concluded here that the proposed model agrees with the experimental data satisfactorily.

  • PDF

The Cutting Characteristics of Rotary Tools Using Regression Analysis (회귀분석법을 이용한 로타리 공구의 절삭 특성)

  • Maeng, Min-Jae;Jang, Sung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.14-20
    • /
    • 2005
  • This paper deals with the study of feasibility of rotary carbide tools in the machining of aluminium alloy. A rotary tool holder was designed and manufactured for this work. Experiments were performed using Taguchi methods and regression analysis to analyse the influence of various factors and their interactions on the cutting characteristics of rotary carbide tools during machining. The cutting force is influenced the most greatly at the inclination angle. The surface roughness is influenced distinctly at depth of cut. It deduced an equation to predict cutting force and surface roughness. Hence, it could be concluded here that the proposed model agrees with the experimental data satisfactorily.

  • PDF