• Title/Summary/Keyword: Rotary tillage

Search Result 76, Processing Time 0.021 seconds

Prediction of tillage Workability by Cone Index (원추지수를 이용한 경운 정지 작업의 작업성 예측)

  • 최석원;오영근;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.195-202
    • /
    • 2000
  • This study was conducted to recognize a possibility that cone index can be used as a means of evaluating the tillage workability. Cone indexes were measured every 24 hours after rainfall at the experimental plots, and the rotary and plowing operations were conducted at the same time. The workability was evaluated on a basis of three categories of good, fair and poor depending on the quality of the performed works. Although the workability was affected by many factors such as soil type, moisture content ground slope and weather condition, the duration and amount of rainfall were of most influence. Results of the study showed that a good workability was resulted from the cone indexes greater than an average of 552 kPa for rotary operations and 671 kPa for plowing operations. Fair work was obtained with cone indexes greater than an average of 331 kPa for rotary operations and 459 kPa for plowing operations. The cone indexes less than an average of 171 kPa and 149 kPa resulted in poor workabilities for rotary and plowing operations, respectively. The experimental results may provide a general guideline for evaluating the tillage workability by cone index.

  • PDF

Effects of Tillage Methods on the Changes of Soil Physical Properties and Rice Yields (경운방법(耕耘方法)의 차이(差異)가 토양(土壤)의 물리성(物理性)과 수도생육(水稻生育)에 미치는 영향(影響))

  • Jo, In-Sang;Min, Kyeong-Beom;Kim, Lee-Yul;Im, Jeong-Nam;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.189-193
    • /
    • 1985
  • A field experiment was conducted to find out the effects of tillage methods on the changes of soil physical properties and rice yields. Silty clay loam soil was treated with six kinds of different tillage methods, cultivator plow-rotary, rotary, tractor deep plow-rotary, subsoiling-rotary, chisel plow-rotary and no-tillage, and Jinju variety of rice was cultivated. The results were summarized as follows; 1. Working efficiency was highest at chisel plow and the efficiencies were decreased with the order of deep plow, subsoiling, rotary, and cultivator plow. 2. Deep plow and chisel plow were considered as the useful treatments of physical properties to 20 cm depth soil and subsoiling was effective to 40 cm depth soil. 3. Rice yields were decreased 4% by rotary and 11% by no-tillage compare to cultivator plow-rotary but the yields were increased 5% by deep plow, 4% by subsoiling and 3% by chisel plow. As the results of all the data, welting efficiency, soil physical properties and rice yields, tractor deep plow was recommendable tillage method for rice paddy soils.

  • PDF

Effects of Rotary Tilling Systems on Power Requirement (로우터리 경운(耕耘)시스템이 소요동력(所要動力)에 미치는 영향(影響))

  • Kim, Soung Rai;Chang, Dong Il;Kwon, Soon Goo;Ahn, Young Ho
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.37-47
    • /
    • 1984
  • Using the soil bin systems, this study was carried out to analyze the effects of the angular and tilling speed of the rotary shaft with the edge curves which were $30^{\circ}$ and $40^{\circ}$, and the edged blade which were single and double, on the torque requirement of rotary tillage. In the analyses, we developed the mathematical models for the torque requirments of rotary tillage, and analyzed the optimum conditions of each variable for the minimum tillage torque requriements. The results of the study were summarized as follows. 1. The required tilling torque by one rotary blade has the minimum value when the tilling speed of the rotary blade was low, and the revolution of the rotary blade was fast, in general. 2. The torque requirements of single edged blade was decreased to about 81% in comparing with that of double edged blade of which the edge curved angle was $40^{\circ}$ and the tilling speed was 29.40 cm/sec. But, for the mean values, the maximum torque requirements were decreased to 45%, and the mean torque requirements were decreased to 35%. 3. For the edge curved angle, the torque requirements of ${\theta}=40^{\circ}$ were 48% more than that of ${\theta}=30^{\circ}$ in the maximum tilling torque in case that the rotary blade were double edged blade. but, there was not a difference when the rotary blades were single edged blade. The mean tilling torques of ${\theta}=40^{\circ}$ were 6% more when the rotary blade was double edged blade, and were 11% less at single edged blade, than that of ${\theta}=30^{\circ}$. 4. In order to reduce the torque requirements for tilling, the optimum revolutions of the rotary shaft were analyzed as that 204-240 rpm for the double edged blade and 280-320 rpm for the single edged blade.

  • PDF

Effects of Barley Straw Application and Tillage Method on Soil Physical Property and Soybean Yield in Paddy Field (논에서 콩 재배시 보릿짚 시용과 경운방법에 따른 토양 물리성과 수량)

  • Lee, Sang-Bok;Kim, Byong-Soo;Kang, Jong-Gook;Kim, Sun;Kim, Jai-Duk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.7
    • /
    • pp.593-598
    • /
    • 2006
  • This study was conducted to investigate the effect of tillage methods such as plowing and rotary tillage (PRT), rotary tillage (RTG), no-tillage after barley straw application (NTB), and barley straw mulching after plowing and rotary tillage (BPR) on the growth and the yield of soybean when cultivated after the cultivation of barley. The methods were compared with the control method in which plowing and rotary tillage after barley straw incineration was applied. Barley straw application resulted in increase in organic matter, total nitrogen, phosphate, and exchangeable cation regardless of tillage methods. Porosity and moisture level in paddy soil was ranked as follows : PRT > RTG > BPR > control > NTB. Decomposition rate of barley straw dramatically increased to 41.7% toward 30 days after soybean sowing, higher in NTB, DRB, and RTG than in BPR. Weed occurrence was decreased 36% in NTB and 40% in BPR. Root activity, nodulation and the dry weight per plant of soybean at flowering stage were highest in NTB and lowest in PRT. Soybean yield in NTB was 3,070 kg/ha increasing 19%, whereas that in PRT was not increased. Therefore in case of a frequent rain during the cultivation of soybean in paddy field PRT could result in excess moisture level in soil, the cultivation without tillage is desirable.

Analysis of Engine Load Factor for Agricultural Cultivator during Plow and Rotary Tillage Operation (플라우 및 로터리 작업 시 농업용 관리기의 엔진 부하율 분석)

  • Si-Eon Lee;Taek-Jin Kim;Yong-Joo Kim;Ryu-Gap Lim;Wan-Soo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.2
    • /
    • pp.31-39
    • /
    • 2023
  • The aim of this study was to measure and analyze engine load factor (LF) according to working conditions (operation type and gear stage) of small agricultural multi-purpose cultivator to estimate the emission of air pollutants. To calculate LF, a torque sensor capable of collecting torque and rotational speed was installed on the engine output shaft and DAQ was used to collect data. A field test was conducted with major operation of a cultivator and tillage operations (plow tillage and rotary tillage). Engine power was calculated using engine torque and rotational speed and LF was calculated using real-time power and rated power. In addition, unified LF was calculated using the weight for each operation and the average LF for each operation. As a result, average LF values at 1.87 and 3.10 km/h by plow tillage were 0.50 and 0.69, respectively. Average LF values at 1.87 and 3.10 km/h by rotary tillage were 0.70 and 0.78, respectively. Furthermore, unified LF calculated in consideration of the weight factor showed a value of 0.65, which was 135% higher than the conventional LF (0.48). Results of this study could be used as basic information for realizing LF values in the field of agricultural machinery.

STUDY ON A CONTACT TYPE SENSOR FOR DETECTING HEIGHT FROM GROUND SURFACE

  • J. K. Ha;Lee, J. Y.;Park, Y. M.;Kim, T. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.178-187
    • /
    • 2000
  • The tillage operation by rotary implements is widely done in Korea. In the case of rotary implements, the tillage depth control system is one of important implement control systems. A contact type-sensor for measurement of the ground height was designed and fabricated to evaluate the possibility of application of the sensor on the tillage depth control system. Indoor experiments were conducted to obtain static and dynamic detection characteristics of the sensor under various conditions; 1) several moisture contents for four soil samples, 2) two soil surfaces with a designed configuration, 3) four heights of the sensor from the soil surface, 4) five traveling speeds of the carrier on which the sensor was attached, and so on. The experimental results showed the detection characteristics of the sensor sufficient as the ground height sensor of the tillage depth control system.

  • PDF

Changes of Soil Salinity due to Flooding in Newly Reclaimed Saline Soil (신간척지 토양에서 담수에 의한 토양염도 변화에 대한 개관)

  • Ryu, J.H.;Yang, C.H.;Kim, T.K.;Lee, S.B.;Kim, S.;Baek, N.H.;Choi, W.Y.;Kim, S.J.;Chung, D.Y.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.45-46
    • /
    • 2009
  • This study was carried out to identify the changes of EC during desalinization due to flooding in newly reclaimed saline soil. To do this, experimental plots were made of rotary tillage+water exchanging plot, flooding plot and rainfall flooding plot. In rotary tillage+water exchanging plot, drainage, rotary tillage and flooding were conducted at the interval of 7 days. In rotary tillage+water exchanging plot and flooding plot, plots were irrigated at the height of 10 cm. After 38 days desalinization, changes of EC values at top soil (0~20 cm) were as follows. In rotary tillage+water exchanging plot, EC decreased from $21.38dS\;m^{-1}$ to $2.16dS\;m^{-1}$ and in flooding plot, EC decreased from $13.97dS\;m^{-1}$ to $2.22dS\;m^{-1}$. In rotary tillage+water exchanging plot and flooding plot, EC values decreased below the EC criterion ($4.0dS\;m^{-1}$) of saline soil. In rainfall flooding plot, EC values decreased or increased according to amounts of rainfall and rainfall time. After 38 days, EC decreased from $16.7dS\;m^{-1}$ to $12.35dS\;m^{-1}$. In flooding plot, changes of EC due to soil depth were investigated. After 38 days desalinization, changes of EC due to soil depth were as follows. At 0~10 cm depth, EC value decreased from $13.08dS\;m^{-1}$ to $0.74dS\;m^{-1}$ (94.3% of salt was desalinized). At 10~20 cm depth, EC value decreased from $14.80dS\;m^{-1}$ to $3.69dS\;m^{-1}$ (75.2% of salt was desalinized). At 20~30 cm depth, soil was desalinized slowly compared with upper soil, EC value decreased from $13.57dS\;m^{-1}$ to $6.93dS\;m^{-1}$ (48.9% of salt was desalinized).

Comparison of Work Performance of Crank-type and Rotary-type Rotavators in Korean Farmland Conditions

  • Nam, Ju-Seok;Kang, Dae-Sig;Kang, Young-Sun;Kim, Kyeong-Uk;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.140-147
    • /
    • 2012
  • Purpose: This study was conducted to understand the work performance of crank-type rotavators and compare them with those of rotary-type rotavators in Korean farmland conditions. Methods: Tillage operations were carried out using both rotavators with the same nominal rotavating width and rated power. During the operations, PTO speed and torque, actual work speed, and rotavating width and depth were measured. To evaluate work performance, pulverizing ratio, inversion ratio, and specific volumetric tilled soil were calculated and compared for each rotavator. Results: It is found that the crank-type rotavator has better specific volumetric tilled soil performance and deep tillage, while the pulverizing ratio is worse. Conclusions: Crank-type and rotary type rotavator have diffenent properties each other in several work performances. It's important, therefore, to choose a suitable type of rotavator that satisfy the farmer's requirements in accordance with the condition of field and the purpose of tillage operation.

Pre-processing of load data of agricultural tractors during major field operations

  • Ryu, Myong-Jin;Kabir, Md. Shaha Nur;Choo, Youn-Kug;Chung, Sun-Ok;Kim, Yong-Joo;Ha, Jong-Kyou;Lee, Kyeong-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • Development of highly efficient and energy-saving tractors has been one of the issues in agricultural machinery. For design of such tractors, measurement and analysis of load on major power transmission parts of the tractors are the most important pre-requisite tasks. Objective of this study was to perform pre-processing procedures before effective analysis of load data of agricultural tractors (30, 75, and 82 kW) during major field operations such as plow tillage, rotary tillage, baling, bale wrapping, and to select the suitable pre-processing method for the analysis. A load measurement systems, equipped in the tractors, were consisted of strain-gauge, encoder, hydraulic pressure, and radar speed sensors to measure torque and rotational speed levels of transmission input shaft, PTO shaft, and driving axle shafts, pressure of the hydraulic inlet line, and travel speed, respectively. The entire sensor data were collected at a 200-Hz rate. Plow tillage, rotary tillage, baling, wrapping, and loader operations were selected as major field operations of agricultural tractors. Same or different farm works and driving levels were set differently for each of the load measuring experiment. Before load data analysis, pre-processing procedures such as outlier removal, low-pass filtering, and data division were performed. Data beyond the scope of the measuring range of the sensors and the operating range of the power transmission parts were removed. Considering engine and PTO rotational speeds, frequency components greater than 90, 60, and 60 Hz cut off frequencies were low-pass filtered for plow tillage, rotary tillage, and baler operations, respectively. Measured load data were divided into five parts: driving, working, implement up, implement down, and turning. Results of the study would provide useful information for load characteristics of tractors on major field operations.

Effects of Short-Term Soil Tillage Management on Activity and Community Structure of Denitrifiers under Double-Cropping Rice Field

  • Tang, Haiming;Li, Chao;Cheng, Kaikai;Shi, Lihong;Wen, Li;Xiao, Xiaoping;Xu, Yilan;Li, Weiyan;Wang, Ke
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1688-1696
    • /
    • 2020
  • Soil physical and chemical characteristics, soil potential denitrification rates (PDR), community composition and nirK-, nirS- and nosZ-encoding denitrifiers were studied by using MiSeq sequencing, quantitative polymerase chain reaction (qPCR), and terminal restriction fragment polymorphism (T-RFLP) technologies base on short-term (5-year) tillage field experiment. The experiment included four tillage treatments: conventional tillage with crop residue incorporation (CT), rotary tillage with crop residue incorporation (RT), no-tillage with crop residue retention (NT), and rotary tillage with crop residue removed as control (RTO). The results indicated that soil organic carbon, total nitrogen and NH4+-N contents were increased with CT, RT and NT treatments. Compared with RTO treatment, the copies number of nirK, nirS and nosZ in paddy soil with CT, RT and NT treatments were significantly increased. The principal coordinate analysis indicated that tillage management and crop residue returning management were the most and the second important factors for the change of denitrifying bacteria community, respectively. Meanwhile, this study indicated that activity and community composition of denitrifiers with CT, RT and NT treatments were increased, compared with RTO treatment. This result showed that nirK, nirS and nosZ-type denitrifiers communities in crop residue applied soil had higher species diversity compared with crop residue removed soil, and denitrifying bacteria community composition were dominated by Gammaproteobacteria, Deltaproteobacteria, and Betaproteobacteria. Therefore, it is a beneficial practice to increase soil PDR level, abundance and community composition of nitrogen-functional soil microorganism by combined application of tillage with crop residue management.