• Title/Summary/Keyword: Rotary motion

Search Result 261, Processing Time 0.029 seconds

Gait Assist Method by Wearable Robot for Incomplete Paraplegic Patients (하지 부분마비 장애인을 위한 착용형 로봇의 보행 보조 방법)

  • Woo, Hanseung;Lee, Jangmok;Kong, Kyoungchul
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.144-151
    • /
    • 2017
  • An important characteristic of people with partially impaired walking ability, such as incomplete paraplegics, is that they are able to generate voluntary motion of lower-limbs. Therefore, wearable robots for the incomplete paraplegic patients require a different assistance method compared to those of complete paraplegics. First, the wearable robot should be controlled to not resist wearer's motion. Second, it should be able to generate assistive torque accurately when needed. In this paper, a wearable robot, called EROWA, for the incomplete paraplegic patients is introduced. EROWA utilizes compact rotary series elastic actuators (cRSEAs) and a control method called the zero impedance control to reduce the mechanical resistance. An assistive torque trajectory is proposed to assist gait in this paper. The proposed method is verified by simulation and experimental studies.

On the Singularities of Optimality Constraint-based Resolved Motion Methods for a Redundant Manipulator (여유 자유도 매니퓰레이터를 위한 지적 제한 조건을 기반으로 한 Resolved Motion 방법의 특이점에 관한 연구)

  • Cho, Dong-Kwon;Choi, Byoung-Wook;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.386-390
    • /
    • 1992
  • Algorithmic or kinematic singularities are inevitably a introduced if optimality criteria or augmented kinematic equations are used to resolve the redundancy of almost any manipulator with rotary joints. In this paper, a sufficient condition for a singularity-free optimal solution of the kinematic control of a redundant manipulator is derived and, specifically, algorithmic singularities are analyzed for optimality-based methods. A singularity-free space (SFS) to characterize the performance of a secondary task for a redundant manipulator using the sufficient condition for a redundant manipulator is defined. The SFS is a set of regions classified by the loci of configurations satisfying the inflection condition for manipulability measure in the Configuration space. Using SFS, the topological property of the Configuration space and the invertible workspace without singularities are analyzed.

  • PDF

Development of the Flip-Chip Bonder using multi-DOF Motion Stage and Vision System (다자유도 구동스테이지와 비전시스템을 이용한 플립칩 본더 개발)

  • 황달연;전승진;김기범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1717-1722
    • /
    • 2003
  • In this paper we developed flip-chip bonder using XY stage, liner-rotary actuator and vision system. We depicted the major parts of the developed flip-chip bonder. Then we discussed several problems and their solutions such as vision and motion control, pick-up module position accuracy, separation of chip from the blue taped hoop, etc. We used a post guide to improve the horizontal positional accuracy against the long arm. Also, we used an ejector module and synchronization technique for easy chip separation from the blue tape.

  • PDF

Topology Optimization of Muffler Hole of Rotary Compressor using GA (유전자 알고리즘을 이용한 회전식 압축기 머플러 토출구의 위상 최적설계)

  • ;Altay Dikec
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.790-795
    • /
    • 2002
  • The object of this research is limited to the reduction of compression process noise only among the main sources of compressor noise such as motor noise, compression process noise, and valve port flow noise. Thus the research is focused on the wave motion rather than the particle motion of sound wave travels. A muffler is a commonly used device to reduce the compression process noise, generated by the pressure pulsations caused by the cyclic compression process. In this research, the acoustic characteristics of the muffler are analyzed by using the normal gradient integral equation proposed by Wu and Wan. Moreover, a commercial code SYSNOISE developed by indirect variational boundary integral equation is also used to validate the results. For the noise reduction, the topology optimization technique using a genetic algorithm is used. The number, size and position of the muffler holes are considered as design variables. Compared with original design, the optimized design has very improved acoustic characteristics. Both numerical and experimental analyses are used to evaluate new design.

  • PDF

Design of a Slim-Type Auto-Focusing Module with a Cam Structure (캠 구조를 가지는 초소형 자동초점 모듈 설계)

  • Kim, Kyung-Ho;Lee, Seung-Yop;Shin, Bu-Hyun;Kim, Soo-Kyung
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Recently, the growing market demand for small and slim mobile phone cameras requires the size reduction of the camera module. In this paper, an auto-focusing actuator for camera phones is proposed by converting the rotational motion by a rotary VCM actuator into the linear motion using a novel cam structure. This new concept for auto-focusing module enables the reduction of the module thickness and low power consumption. This paper presents the theoretical analysis and optimal design for VCM actuator, cam structure and preload spring. Finally, the experimental results using a prototype with the size of $9.9{\times}9.9{\times}5.9\;mm^3$ are compared with the theoretical predictions.

  • PDF

Durable and Sustainable Strap Type Electromagnetic Harvester for Tire Pressure Monitoring System

  • Lee, Soobum;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.473-480
    • /
    • 2013
  • A new concept design of electromagnetic energy harvester is proposed for powering a tire pressure monitoring sensor (TPMS). The thin coil strap is attached on the circumferential surface of a rim and a permanent magnet is placed on the brake caliper system. When the wheel rotates, the relative motion between the magnet and the coil generates electrical energy by electromagnetic induction. The generated energy is stored in a storage unit (rechargeable battery, capacitor) and used for TPMS operation and wireless signal transmission. Innovative layered design of the strap is provided for maximizing energy generation. Finite Element Method (FEM) and experiment results on the proposed design are compared to validate the proposed design; further, the method for design improvement is discussed. The proposed design is excellent in terms of durability and sustainability because it utilizes the everlasting rotary motion throughout the vehicle life and does not require material deformation.

Parametric Analysis of Tubular-Type Linear Magnetic Couplings with Halbach Array Magnetized Permanent Magnet by Using Analytical Force Calculation

  • Kim, Chang-Woo;Choi, Jang-Young
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.110-114
    • /
    • 2016
  • Magnetic couplings are widely used in various industrial applications because they can transmit magnetic force without any mechanical contact. In addition, linear couplings have many advantages. For example, they do not need to convert rotary motion to linear motion. This paper shows an analytical analysis of tubular type linear magnetic couplings (TLMCs) with a Halbach array magnetized permanent magnet (PM). An analytical method for magnetic fields owing to PMs is performed by using magnetic vector potential as well as Poisson and Laplace equations. Then, the magnetic force is calculated by using the Maxwell stress tensor. The analytical analysis results were compared with finite element method (FEM) results. In addition, we predicted the magnetic force characteristic according to design parameters such as the iron core thickness, inner PM thickness to -outer PM thickness ratio, PM segment ratio of the axial magnetized PM segment and radial magnetized PM segment, and various pole numbers.

Dynamic Characteristics Analysis of Tubular Type Linear BLDC Motor (원통형 리니어 BLDC 전동기의 동 특성 해석)

  • Kim, Tae-Hyun;Kim, Byong-Kuk;Hwang, Dong-Won;Lee, In-Jae;Jo, Won-Yung;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1462-1464
    • /
    • 2005
  • The demand for linear electrical machines, for both controlled motion and electrical power generation, has increased steadily in recent years. For example, for applications in the high-speed packaging and manufacturing sectors, linear electromagnetic machines, which provide thrust force directly to a payload without the need to convert rotary to linear motion, offer significant advantages in terms of simplicity, efficiency, positioning accuracy, and dynamic performance in both acceleration capability and bandwidth. So, this paper describes analysis the dynamic characteristics of Tubular Type Linear BLDC Motor by simulation and experiments.

  • PDF

Vibration Analysis of a Multi-Stage Rotating Shaft Shape (다단 회전축계 형상의 진동 연구)

  • Song, OhSeop;Park, Sangyun;Kang, Sunghwan;Seo, Jungseok;Kim, Sunhong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.730-735
    • /
    • 2013
  • This paper contains various vibration analysis of multi-stage shaft shape such as the bending, torsional and axial vibration. The shaft system is modeled as Timoshenko beam with the transverse shear and rotary inertia effect and the equation of motion is derived by Hamilton's principle with considering clamped-free boundary condition. Then, eigenvalue problem of discrete equation of motion for multi-stage shaft model is solved and got results of the natural frequency through the numerical analysis. Obtained numerical analysis results through Matlab program were compared with those of FEM analysis to verify the results. This study suggests that design of shaft system be consider torsional and axial vibration as well as bending vibration.

  • PDF

Numerical Model of Propulsive Behavior of a Rotating Spring in Viscous Fluid (점성유체 중에 회전하는 스프링의 추진적 거동에 관한 수치해석 모델)

  • Choi, Won Yeol;Suh, Yong Kweon;Kang, Sangmo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.497-504
    • /
    • 2015
  • In this paper, we study the propulsive behavior related to the flagellar motion of bacteria using a spring model. A commercial program was used to conduct simulations, and we verified the numerical technique by setting an additional rotating domain and conducting a parametric study. The numerical results are in good agreement with slender-body theory, although overall, they are not in agreement with resistive-force theory. We confirm the effect of the rotational velocity, pitch, helical radius, fluid viscosity, and, in particular, the distance from the wall on the propulsion of the spring.