• 제목/요약/키워드: Rotary Pump

검색결과 66건 처리시간 0.098초

Protection properties of HTS coil charging by rotary HTS flux pump in charging and compensation modes

  • Han, Seunghak;Kim, Ji Hyung;Chae, Yoon Seok;Quach, Huu Luong;Yoon, Yong Soo;Kim, Ho Min
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권4호
    • /
    • pp.19-24
    • /
    • 2021
  • The low normal zone propagation velocity (NZPV) of high-temperature superconducting (HTS) tape leads to a quench protection problem in HTS magnet applications. To overcome this limitation, various studies were conducted on HTS coils without turn-to-turn insulation (NI coils) that can achieve self-protection. On the other hand, NI coils have some disadvantages such as slow charging and discharging time. Previously, the HTS coils with turn-to-turn insulation (INS coils) were operated in power supply (PS) driven mode, which requires physical contact with the external PS at room-temperature, not in persistent current mode. When a quench occurs in INS coils, the low NZPV delays quench detection and protection, thereby damaging the coils. However, the rotary HTS flux pump supplies the DC voltage to the superconducting circuit with INS coils in a non-contact manner, which causes the INS coils to operate in a persistent current mode, while enabling quench protection. In this paper, a new protection characteristic of HTS coils is investigated with INS coils charging through the rotary HTS flux pump. To experimentally verify the quench protection characteristic of the INS coil, we investigated the current magnitude of the superconducting circuit through a quench, which was intentionally generated by thermal disturbances in the INS coil under charging or steady state. Our results confirmed the protection characteristic of INS coils using a rotary HTS flux pump.

Performance Comparison of Various Types of $CO_2$ Compressors for Heat Pump Water Heater Application

  • Kim, Hyun-Jin;Kim, Woo-Young;Ahn, Jong-Min
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권4호
    • /
    • pp.115-122
    • /
    • 2009
  • Numerical simulations for scroll, two-stage twin rotary, and two-cylinder reciprocating compressors have been carried out to understand the effectiveness of each type compressor for heat pump water heater application using $CO_2$ as refrigerant. For suction pressure of 3.5 MPa and discharge pressure of 9 MPa, clearance volume ratio of the reciprocating compressor needs to be about 5% or less to have the volumetric efficiency comparable to that of the scroll compressor with tip clearance of $5\;{\mu}m$. Volumetric efficiency of the scroll compressor is quite sensitive to tip clearance. Adiabatic efficiency of the twin rotary compressor was calculated to be the lowest among the three types, and the most severe drawback of the $CO_2$ scroll compressor was a significant increase in the mechanical loss at the thrust surface supporting the orbiting scroll member. While the scroll compressor showed very smooth torque load variation, peak-to-peak torque variations of the twin rotary and two-cylinder reciprocating compressors were about 50% and 250%, respectively.

전자빔 가공시스템용 진공환경의 성능평가 (Characteristic Evaluation of Vacuum Chamber for EBM System)

  • 강재훈;이찬홍;최종호;임윤빈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.934-937
    • /
    • 2005
  • It is not efficient and scarcely out of the question to use commercial expensive electron beam lithography system widely used for semiconductor fabrication process for the manufacturing application field of various devices in the small business scope. Then scanning electron microscope based electron beam machining system is maybe regarded as a powerful model can be used for it simply. To get a complete suite of thus proper system, proper chamber with high vacuum condition is necessarily required more than anything else to modify scanning electron microscope. In this study, special chamber unit using rotary pump and diffusion pump to obtain high vacuum degree was designed and manufactured and various evaluation tests fur recognize the vacuum characteristic were accomplished.

  • PDF

회전익 항공기 주유압펌프용 인듀서 성능 향상을 위한 형상최적설계 (Shape Optimization for Enhancing the Performance of an Inducer for the Main Hydraulic Pump in a Rotary Wing Aircraft)

  • 김효겸;허형석;박영일;이창돈
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권2호
    • /
    • pp.37-44
    • /
    • 2017
  • In this study, in order to prevent cavitation in a variable swash-plate type hydraulic pump, a basic model impeller has been applied to a new pump, and the impeller shape has been optimized through flow analysis. Based on the analysis results, we could propose an impeller shape with high efficiency and low possibility of cavitation in comparison with the basic model. The simplification of the basic shape of the impeller of the hydraulic pump was performed in three parts in the order of hub shape, wing, and curvature, and eight design parameters were defined to satisfy the design requirement. Compared with the initial model of the impeller, when the differential pressure of the optimum model increased, the efficiency was improved. It achieved the goal of design improvement because cavitation did not occur under the rated operating conditions.

가스인젝션을 적용한 이산화탄소 열펌프의 난방성능에 관한 실험적 연구 (Experimental Study on the Heating Performance of a $CO_2$ Heat Pump with Gas Injeciton)

  • 백창현;이응찬;강훈;김용찬;조성욱
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.358-363
    • /
    • 2007
  • In this study, experimental study on the heating performance of a $CO_2$ heat pump with gas injection was performed varying gas injection ratio and outdoor temperature to improve the heating performance of $CO_2$ heat pump. The twin rotary compressor having volume ratio of 0.7 was adopted in the $CO_2$ heat pump. From the test results, the heating capacity and COP were increased and the compressor discharge temperature was decreased with the increase of injection ratio. At the outdoor temperature of $-8^{\circ}C$, the heating capacity and COP with the injection were increased by 45% and 24%, respectively, compared with non-injection condition.

  • PDF

기액분리기를 적용한 가스 인젝션 히트펌프의 성능 향상에 관한 실험적 연구 (The Performance Improvement of a Gas Injection Heat Pump with a Flash Tank)

  • 손길수;김동우;최성경;김용찬
    • 설비공학논문집
    • /
    • 제29권6호
    • /
    • pp.297-305
    • /
    • 2017
  • Air-source heat pumps are widely used in residential heating systems. However, the decrease in the capacity of the heat pump is unavoidable when operating at very low and high ambient temperatures. The vapor injection technique is considered a promising technology to overcome this problem. Recent research on vapor injection cycles have mainly adopted a scroll compressor with an internal heat exchanger at severe operating conditions. This study measured the COP and EER of a gas injection heat pump using a flash tank with an inverter-driven rotary compressor at severe operating conditions. Compared to non-injection heat pumps, the heating capacity and COP of the gas injection heat pump improved up to 15% and 2.9%, respectively, at outdoor temperatures of $-10^{\circ}C$ to $7^{\circ}C$. The cooling capacity of the gas injection heat pump was 11% higher than the non-injection heat pump at an outdoor temperature of $35^{\circ}C$. At the same time, the EER of the gas injection heat pump was similar to that of the non-injection heat pump.

클로펌프 회전자 설계에 대한 고찰 (Consideration on the rotor design of a claw pump)

  • 인상렬
    • 한국진공학회지
    • /
    • 제8권3B호
    • /
    • pp.257-261
    • /
    • 1999
  • The claw pump, one of oil-less dry pumps developed to solve problems found in vacuum systems pumped by oil-sealed rotary pumps, has been widely used separately or as a part of compound structure with a roots pump. The claw pump has some merits such as a high pumping speed, a high compression ratio, and relatively little heat generation. The high compression ratio of the claw pump is compression ratio, and relatively little heat generation. The high compression ratio of the claw pump is based on efficient sweeping action of the special type rotor and an intrinsic self-valving mechanism. The contour of the rotor with claw-type blade is designed basically to make two rotors revolve smoothly without touching with each other, and related dimensions are determined by required pumping speed, compression ratio, power demand and diameter of the rotor axis. In this paper the procedure of designing the rotor of the claw pump is described and factors influencing the pump performance are analyzed.

  • PDF

트윈로터리 압축기 적용 냉방 및 급탕 겸용 이산화탄소 시스템의 성능특성에 관한 연구 (Performance Characteristics of a CO2 Cooling and Water Heating System with a Twin-rotary Compressor)

  • 조홍현;이호성;백창현;김용찬;조성욱
    • 설비공학논문집
    • /
    • 제20권4호
    • /
    • pp.230-237
    • /
    • 2008
  • The objective of this paper is to investigate the performance characteristics of a $CO_2$ cooling and water heating system using a twin-rotary compressor with the compression volume ratio of 0.6. The cooling performances of the $CO_2$ heat pump were measured and analyzed with the variations of charge amount, EEV opening, and compressor frequency. In addition, the performance of the combined system including cooling and water heating was also measured and analyzed by varying inlet temperature of the EEV. As a result, the optimal normalized charge and cooling COP in the cooling mode were 0.307 and 2.06, respectively. The application of the water heating into the $CO_2$ heat pump improved the cooling performance over 78% and decreased the EEV inlet temperature by $8^{\circ}C$, which can increase system reliability.

Sensorless Control for a PM Synchronous Motor in a Single Piston Rotary Compressor

  • Cho Kwan-Yuhl
    • Journal of Power Electronics
    • /
    • 제6권1호
    • /
    • pp.29-37
    • /
    • 2006
  • A sensorless control for an IPM (Interior Permanent Magnet) synchronous motor in a single piston rotary compressor is presented in this study. The rotor position is estimated from the d-axis and q-axis current errors between the real system and a motor model of the position estimator. The torque pulsation of the single piston rotary compressor is compensated to reduce speed ripples, as well as, mechanical noise and vibration. The proposed sensorless drive enables the compressor to operate at a lower speed which increases energy savings and reduces mechanical noise. It also gives high speed operations by a flux weakening control for rapid air-cooling and heating of the heat pump air-conditioners.

심장 내 이식형 축류 혈액 펌프용 자성 유체 축봉의 내압 특성 (Characteristics of the Sealing Pressure of a Magnetic Fluid Shaft Seal for Intra-Cardiac Axial Flow Blood Pumps)

  • 김동욱
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권10호
    • /
    • pp.477-482
    • /
    • 2002
  • One of the key technologic requirements for rotary blood pumps is the sealing of the motor shaft. A mechanical seal, a journal bearing, magnetic coupling, and magnetic suspension have been developed, but they have drawbacks such as wear, thrombus formation, and power consumption. A magnetic fluid seal is durable, simple, and non power consumptive. Long-term experiments confirmed these advantages. The seal body was composed of a Nd-Fe-B magnet and two pole pieces; the seal was formed by injecting magnetic fluid into the gap (50${\mu}m$) between the pole pieces and the motor shaft. To contain the ferro-fluid in the seal and to minimize the possibility of magnetic fluid making contact with blood, a shield with a small cavity was attached to the pole piece. While submerged in blood, the sealing pressure of the seal was measured and found to be 31kPa with magnetic fluid LS-40 (saturated magnetization, 24.3 KA/m) at a motor speed of 10,000 rpm and 53kPa under static conditions(0mmHg). The specially designed magnetic fluid seal for keeping liquids out is useful for axial flow blood pumps. The magnetic fluid seal was incorporated into an intra-cardiac axial flow blood pump.