• Title/Summary/Keyword: Root zone

Search Result 466, Processing Time 0.029 seconds

Effect of Plasma-activated Water Process on the Growth and Functional Substance Content of Lettuce during the Cultivation Period in a Deep Flow Technique System (담액수경재배 시스템에서 플라즈마수 처리가 상추의 생육 및 페놀류 함량에 미치는 영향)

  • Noh, Seung Won;Park, Jong Seok;Kim, Sung Jin;Kim, Dae-Woong;Kang, Woo Seok
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.464-472
    • /
    • 2020
  • We suggest a hydroponic cultivation system combined with a plasma generator to investigate the changes in the growth and functional substance content of lettuces during the cultivation period. Lettuce seedlings of uniform size were planted in semi-DFT after seeding for 3 weeks, and the plasma-activated water was intermittently operated for 1 hour at an 8 hours cycle for 4 weeks. Lettuces grew with or without plasma-activated water with the nutrient solution in hydroponics culture systems. Among the reactive oxygen species generated during plasma-activated water treatment, brown spots and necrosis appeared in the individuals closer to the plasma generating device due to O3, and there was no significant difference in the growth parameters. While the rutin and total phenolic content of the lettuce shoot grown in the nutrient solution were higher than that of the plasma-activated water, epicatechin contents in plasma-activated water were significantly greater than the nutrient solution. However, in the roots, all kinds of secondary metabolites measured in this work, rutin, epicatechin, quercetin, and total phenolic contents, were significantly higher in the plasma-activated water than the control. These results were indicated that the growth of lettuce was decreased due to the reactive oxygen species such as ozone in the plasma-activated water, but the secondary metabolites in the root zone increased significantly. It has needed to use this technology for the cultivation of root vegetables with the modified plasma-activated water systems to increase secondary metabolite in the roots.

Blue-green algae as a Potential agent Causing Turf Leaf Disease (잔디 엽병을 유발하는 잠재인자로서의 남조류(Blue-Green algae)에 대한 관찰보고)

  • Park, Dae-Sup;Lee, Hyung-Seok;Hong, Beom-Seok;Choi, Byoung-Man;Cheon, Jae-Chan
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.161-170
    • /
    • 2008
  • Recently irregular dark-colored patches were found on the Kentucky teeing ground in a golf course in Gyunggi providence. Interestingly, blue-green algae from the leaf tissue sample containing black spot-stained symptoms were largely observed through microscopic study. In general, algae present on the upper soil surface or in the upper layer of root zone form dark brown layers of scum or crust, which invoked harmful effects to turf growth such as poor drainage, inhibition of new root development. In this observation, unlike the algae were sometime found in senescing leaves on contacted soil in July and August, the blue-green algae were detected within black spot-stained Kentucky bluegrass leaf tissues including leaf blade, ligule, auriclea as well as leaf sheath. The blue-green algae were also detected on the leaf and stem tissue adjacent to the symptomatic leaf tissues. Two species of blue-green algae, Phomidium and Oscillatoria, were greatly observed. Oscillatoria species was more commonly notified in all samples. In addition, the two species were found on a putting green showing yellow spot disease at another golf course in Gyunggi providence. The data from chemical control assay revealed that chemicals such as propiconazole, iprodione, and azoxystrobin decreased blue-green algae population and leaf spots, which finally resulted in enhanced leaf quality. All taken together, we strongly suggested that the disease-like phenomenon by blue-green algae might be very closely mediated with infection/translocation process in relation with turfgrass. It indicates that blue-green algae in turf management may play an adverse role as a secondary barrier as well as a pathogenic agent. This report may be helpful for superintendents to recognize and understand the fact that algae control should be provided more cautiously and seriously than we did previously in upcoming golf course management.

Characteristics of Growth and Seedling Quality of 1-Year-Old Container Seedlings of Quercus myrsinaefolia by Shading and Fertilizing Treatment (피음 및 시비처리에 따른 가시나무 1년생 용기묘의 생장과 묘목품질 특성)

  • Sung, Hwan In;Song, Ki Sun;Cha, Young Geun;Kim, Jong Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.598-608
    • /
    • 2011
  • The purpose of this study was to examine potential effects of shading and fertilizing treatment - two basic applicable factors in production of 1-year-old container seedling - on growth and seedling quality of Quercus myrsinaefolia, one of evergreen tree species in warm temperate zone of Korean. Every experimental process was conducted in a facility that consisted of compartments under the lighting control with full sunlight and shading (35%, 55% and 75% of full sunlight). Based on fertilizing treatment, this study made an experiment in 4 groups of container seedling: control (non-treated seedlings) and 1000, 2000, 3000 ppm group (3 groups with different concentrations of water-soluble fertilizer (N:P:K=19:19:19, v/v). Seedlings under 55% shading with 2000 ppm concentration showed the highest height (totaling 21.1 cm), and under 35% shading with 2000 ppm concentration showed the highest root collar diameter growth (totaling 3.96 mm) among others. All three fertilizing groups except control showed H/D ratio ranging from 4.27 to 5.26 regardless of fertilizer concentration under 35% and 55% shading where container seedlings showed a tendency toward excellent growth of height and root collar diameter. Overall, 2000 ppm group under 55% shading showed highest dry mass production of leaves (1,292 g) among others, while 2000 ppm group under 35% shading showed highest dry mass production of shoots and roots (0.592 g and 0.998 g, respectively) among others. Also, it was found that 2000 ppm group under 35% shading showed the highest dry mass production of whole seedling, which was followed by 2000 ppm group under 55% shading and 3000 ppm group under 35% shading, respectively. According to analysis on LWR of Quercus myrsinaefolia depending on shading and fertilizing treatment, it was found that 3000 ppm group under 75% shading showed highest LWR level among others, whereas every fertilized group showed lower RWR level than control without fertilizing regardless of shading levels. In general, all fertilized groups under 55% shading had relatively high quality index (QI), and 2000 ppm group under 35% shading had highest QI among others. Based on the findings of this study, it is concluded that shading level ranging from 35 to 55% and fertilizing concentration of 2,000 ppm are suitable for producing 1-year-old container seedlings of Quercus myrsinaefolia with excellent growth and high quality index.

Effect of Irrigation Methods for Reducing Drainage on Growth and Yield of Paprika (Capsicum annuum 'Coletti') in Rockwool and Cocopeat Culture (배액절감형 양액공급 방법이 파프리카(Capsicum annuum 'Coletti') 생육과 수량에 미치는 영향)

  • An, Chul Geon;Hwang, Yeon Hyeon;An, Jae Uk;Yoon, Hae Suk;Chang, Young Ho;Shon, Gil Man;Hwang, Seung Jae;Kim, Kang Soo;Rhee, Han Cheol
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.228-235
    • /
    • 2012
  • This study was carried out to investigate the effect of irrigation methods for reducing a drainage on the growth and yield in rockwool (Grodan co.) and cocopeat (chip : dust = 50 : 50 included fiber) culture. The nutrient solution was irrigated by $100J{\cdot}cm^{-2}$-100 mL, $50J{\cdot}cm^{-2}$-45 mL, $50J{\cdot}cm^{-2}$-40 mL, $50J{\cdot}cm^{-2}$-35 mL ($100{\sim}50J{\cdot}cm^{-2}$-100~35 mL, Nutrient solution 100~35 mL was irrigated per plant when the accumulated radiation was $100{\sim}50J{\cdot}cm^{-2}$). The drain rates per plant of 100-100, 50-45, 50-40, 50-35 were 26.3%, 8.8%, 6% 4.4% and 23.1%, 7.5%, 5% 3.4% in rockwool and cocopeat slabs. The water contents and EC of 100-100 and 50-45 were managed by the 55~70%, $3.0{\sim}5.0dS{\cdot}m^{-1}$ which were good condition for paprika culture in rockwool and cocopeat slabs, while those of 50-40 and 50-35 were managed by beyond 50%, $4.5{\sim}9.5dS{\cdot}m^{-1}$. The plant height, number of branches and leaf size of 100-100 and 50-45 were similarly increased while those of 50-40 and 50-35 were decreased. The fruit size and weight of 50-40 and 50-35 were small and light, while those of 100-100 and 50-45 were similarly big and heavy. The marketable fruits of 100-100 and 50-45 treatments were similarly more by 9.7~9.8 in rockwool and 8.8~8.9 in cocopeat, while the unmarketable fruits, the small and blossom end rot fruits were increased in 50-40 and 50-35 treatments. The yield of 100-100 and 50-45 treatments were similarly high.

Comparison Study of Water Tension and Content Characteristics in Differently Textured Soils under Automatic Drip Irrigation (자동점적관수에 의한 토성별 수분함량 및 장력 변화특성 비교 연구)

  • Kim, Hak-Jin;Ahn, Sung-Wuk;Han, Kyung-Hwa;Choi, Jin-Yong;Chung, Sun-Ok;Roh, Mi-Young;Hur, Seung-Oh
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.341-348
    • /
    • 2013
  • Maintenance of adequate soil tension or content during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil tension and content for precision irrigation would allow optimal soil water condition to crops and minimize the adverse effects of water stress on crop growth and development. This research reports on a comparison of soil water tension and content variations in differently textured soils over time under drip irrigation using two different water management methods, i.e. pulse time and required water irrigation methods. The pulse time-based irrigation was performed by turning the solenoid valve on and off for preset times to allow the wetting front to disperse in root zone before additional water was applied. The required water estimation method was a new water control logic designed by Rural Development Administration that applies the amount of water required based on a conversion of the measured water tension into water content. The use of the pulse time irrigation method under drip irrigation at a high tension of -20 kPa and high temperatures over $30^{\circ}C$ was not successful at maintaining moisture tensions within an appropriate range of 5 kPa because the preset irrigation times used for water control could not compensate for the change in evapotranspiration during day and night. The response time and pattern of water contents for all of the tested soils measured with capacitance-based sensor probes were faster and more direct than those of water tensions measured with porous and ceramic cup-based tensiometers when water was applied, indicating water content would be a better control variable for automatic irrigation. The required water estimation-based irrigation method provided relatively stable control of moisture tension, even though somewhat lower tension values were obtained as compared to the target tension of -20 kPa, indicating that growers could expect to be effective in controlling low tensions ranging from -10 to -20 kPa with the required water estimation system.

Origin and Storage of Large Woody Debris in a Third-order Mountain Stream Network, Gangwon-do, Korea (강원도 산지계류 내 유목의 기원과 현존량)

  • Kim, Suk Woo;Chun, Kun Woo;Seo, Jung Il;Lim, Young Hyup;Nam, Sooyoun;Jang, Su Jin;Kim, Yong Suk;Lee, Jae Uk
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.3
    • /
    • pp.249-258
    • /
    • 2020
  • This study aims to provide reference material for effective forest management techniques at the catchment scale, based on the field investigation of large woody debris (LWD) in 11 streams within a third-order forest catchment in Gangwon Province, Korea. To achieve this aim, we analyzed the morphological features of LWD pieces, and the storage and distribution status of LWD by stream order throughout the entire investigation. As a result, a total of 1,207 individual pieces of LWD were categorized into three types as follows: (ⅰ) 1,142 pieces (95%) as only trunk and 65 pieces (5%) as a trunk with root wad, (ⅱ) 1,015 pieces (84%) as non-thinned and 192 pieces (16%) as the thinned, and (ⅲ) 1,050 pieces (87%) as conifer and 157 pieces (13%) as broadleaf. Additionally, in-stream LWD loads (㎥/ha) decreased with increasing stream order, yielding 105.4, 71.3, and 35.6 for first-, second-, and third-order streams, respectively. On the other hand, the ratio of LWD jams to the total LWD volume increased with increasing stream order, yielding 11%, 43%, and 49% for first-, second-, and third-order streams, respectively. Finally, a comparison of the in-stream LWD load with previous studies in several countries around the world indicated that in-stream LWD load was positively correlated with forest stand age even though the climate, topography, forest soil type, forest composition, stand growth rate, disturbance regime, and forest management practices were different. These results could contribute to understanding the significance of LWD as a by-product of forest ecosystems and an indicator of riparian forest disturbance. Based on this, we conclude that advanced forest management techniques, including treatment of thinning slash and stand density control of riparian forest by site location (hillslope and riparian zone, or stream order), should be established in the future, taking the forest ecosystem and the aquatic environment from headwater streams to low land rivers into consideration.

Studies on Amelioration of Soil Physico-Chemical Properties and Rice Yield in Sandy Tidal Saline Paddy Soil (사질(砂質) 염해답(鹽害畓)에서 개량제(改良劑) 시용(施用)이 토양(土壤)의 물리화학성(物理化學性) 변화(變化)와 수도수량(水稻收量)에 미친 영향(影響))

  • Yoo, Chul-Hyun;Kim, Jong-Gu;Choi, Song-Yeol;Cho, Guk-Hyun;Yoo, Sug-Jong;So, Jae-Dong;Rhee, Gyeong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.4
    • /
    • pp.241-248
    • /
    • 1993
  • An experiment was conducted in 1990~1991 to study the effects of various soil amelioration on the soil productivity and machine workability at tidal land paddy field of Kyewhado Substation, Homam Crop Experiment Station. The soil, Munpo Series(fine sandy loam, Typic Fluvaquents) was treated with gipsum, rice straw, rice straw compost and foreign soil(at 20cm depth) after deep ploughing. The results are surmerized as follows. 1. Sand and clay were slightly increased, while silt was slightly decreased in the rice straw and compost plots. The soil texture was changed from loam to sand loam by the addition of foreign soil 2. Soil bulk density and porosity was decreased in the rice straw, compost and foreign soil addition plots. 3. Cone penetration resistance was $12.5kg/cm^2$ at 10cm of soil depth before experiment and $12.5kg/cm^2$ at 20cm of soil depth after experiment except control, and the root zone was expended down to 20cm. 4. Soil salt content before experiment was 0.46 and 0.48% for surface soil(10cm) and subsoil(20cm), respectively ; The salt content of ameliorated plot was 0.26~0.32% and 0.16~0.31%, respectively, indicating good leaching of soil salt by the soil improvements. 5. The yields of rice in different treatments were in the order of the foreign soil addition > compost > gypsum > rice straw > control.

  • PDF

Wilted Symptom in Watermelon Plant under Ventilation Systems (환기처리에 의한 수박의 시듦증 발생 기작)

  • Cho, Ill-Hwan;Ann, Joong-Hoon;Lee, Woo-Moon;Moon, Ji-Hye;Lee, Joo-Hyun;Choi, Byung-Soon;Son, Seon-Hye;Choi, Eun-Young;Lee, Sang-Gyu;Woo, Young-Hoe
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.529-534
    • /
    • 2010
  • Occurrence of wilted symptom in watermelon plant ($Citrullus$ $lanatus$ L.) is known to be caused by physiological disorder. The symptom results in the loss of fruit production and thus the economical loss of watermelon growers. The incidence of symptom is often found from the middle of March to the end of May in the major watermelon crop production areas of Korea (i.e. Uiryeong, Gyeongnam (lat $37^{\circ}$56'64"N, long $126^{\circ}$99'97"E)). Despite of extensive information about the physiological disorder, little study has been conducted to understand a relationship between the wilted symptom and accompanying environment factors (e.g. temperature). This study aimed to investigate effects of environmental conditions amended by a forced-ventilation system on physiological characteristics of watermelon and incidence of the wilted symptom. Watermelon plants were grown from January to May, 2009 with either the forced-or natural-ventilation treatment in a greenhouse located in the Uiryeong. In the result, the forced-ventilation treatment decreased the air, leaf and root-zone temperature approximately $4.5^{\circ}C$, $5^{\circ}C$ and $3^{\circ}C$, respectively, compared to the natural-ventilation. The fruit growth rate was maximized twice during the entire growing period. The higher rate of fruit growth was observed under the natural-ventilation than the forced one. Maximization of the fruit growth rate (approximately 430 g per day) was first observed by 12 days after fruiting under the natural-ventilation treatment, while the second one (approximately 350 g per day) was observed by 24 days after fruiting. The wilted symptom started occurring by 22 days after fruiting under the natural-ventilation, whereas no incidence of the symptom was found under the forced-ventilation treatment. Interestingly, the forced-ventilation lowered the fruit growth rate (approximately 320 g per day) compared to the natural one. Maximization of the fruit growth rate under the forced-ventilation was found at 4 days later than that under the natural one. This result coincided with a slower plant growth under the forced-ventilation treatment. These results suggest that the forced-ventilation slows down extension growth of fruit and plant, which may be associated with lowering leaf temperature and saturation deficit. We suggest the hypothesis that the forced-ventilation may alleviate stress of the wilted symptom by avoiding extreme water evaporation from leaves due to high temperature and thus by reducing competition between leaves and fruits for water. More direct and detailed investigations are needed to confirm the effect of the forced ventilation.

Effect of Media on the Growth of 'Pechika' Strawberry Grown in Hydroponics on Highland in Summer (사계성 페치카' 딸기의 고랭지 여름철 양액재배시 배지선택)

  • Rhee Han-Cheol;Kang Nam-Jun;Rho Il-Rae;Jung Ho-Jung;Kwon Joon-Kook;Kang Kyung-Hee;Lee Jae-Han;Lee Sung-Chan
    • Journal of Bio-Environment Control
    • /
    • v.15 no.3
    • /
    • pp.257-263
    • /
    • 2006
  • This experiment was conducted to investigate the optimal media for 'Pechika' ever-bearing strawberry grown in hydroponic culture system in summer highland. Three mixed media (1:1, v/v) of peatmoss with perlite, rice hull, and granular rockwool, and four solution strengths of EC 0.5, 0.75, 1.0 and $1.25 dS{\cdot}m^{-1}$ were tested. Root zone temperature in peatmoss+perlite media was 1 to $3^{\circ}C$ lower than in the other media. The culture medium of mixing to peat moss and perlite was most effective in producing good yield and fruit quality. The culture medium of mixing to peat moss and perlite was the highest about 1,632kg/10a to yield yearly average, but was very undulating 732 kg/10a to yield in 2004 year and 3,013kg/10a in 2003 year. The deformed fruits were increased when the solution strength was increased, especially in EC $1.25dS{\cdot}m^{-1}$. The soluble solids and the acidity content of fruits were increased with higher solution strength regardless of media. The uptake of Ca and Mg was inhibited at higher solution strength, and the uptake of N, P and K was promoted. Therefore, the culture medium of mixing to peat moss and perlite was the most suitable culture medium to product strawberry in summer, because it had the highest yield even though fruit quality among treatments was not significant.

Variation of Soil Physical Characteristics by Drainage Improvement in Poorly Drained Sloping Paddy Field (배수불량 경사지 논 토양의 배수방법에 따른 토양 물리성 변화)

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Jeon, Seung-Ho;Lee, Hwang-A
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.704-710
    • /
    • 2012
  • The lower portion of sloping paddy fields normally contains excessive moisture and the higher water table caused by the inflow of ground water from the upper part of the field resulting in non-uniform water content distribution. Four drainage methods namely Open Ditch, Vinyl Barrier, Pipe Drainage and Tube Bundle for multiple land use were installed within 1-m position from the lower edge of the upper embankment of sloping alluvial paddy fields. This study was conducted to evaluate soil physical characteristics by drainage improvement in poorly drained sloping paddy field. The results showed that subsurface drainage by Pipe Drainage improves the productivity of poorly drained soils by lowering the water table and improving root zone soil layer condition. In an Pipe drainage plot, soil moisture drained faster as compared to the other drainage methods. Infiltration rate showed high tendency to Piper Drainage method about $20.87mm\;hr^{-1}$ than in Open Ditch method $0.15mm\;hr^{-1}$. And Similarly soil water and degree of hardness and shear strength phase of soil profile showed a tendency to decrease. From the above results, we found that when an subsurface drainage was established with at 1m position from the lower edge paddy levee of the upper field in sloping poorly drained paddy fields Pipe Drainage was the most effective drainage system for multiple land use.