Effect of Irrigation Methods for Reducing Drainage on Growth and Yield of Paprika (Capsicum annuum 'Coletti') in Rockwool and Cocopeat Culture

배액절감형 양액공급 방법이 파프리카(Capsicum annuum 'Coletti') 생육과 수량에 미치는 영향

  • An, Chul Geon (Gyeongnam Agriculture Research & Extension Services) ;
  • Hwang, Yeon Hyeon (Gyeongnam Agriculture Research & Extension Services) ;
  • An, Jae Uk (Gyeongnam Agriculture Research & Extension Services) ;
  • Yoon, Hae Suk (Gyeongnam Agriculture Research & Extension Services) ;
  • Chang, Young Ho (Gyeongnam Agriculture Research & Extension Services) ;
  • Shon, Gil Man (Gyeongnam Agriculture Research & Extension Services) ;
  • Hwang, Seung Jae (Department of Horticulture, Gyeongsang National University) ;
  • Kim, Kang Soo (Department of Environmental Horticulture, The University of Seoul) ;
  • Rhee, Han Cheol (Protected Horticulture Research Station, National Institute of Horticultural and Herbal Science)
  • 안철근 (경상남도농업기술원 수출농식품연구과) ;
  • 황연현 (경상남도농업기술원 수출농식품연구과) ;
  • 안재욱 (경상남도농업기술원 수출농식품연구과) ;
  • 윤혜숙 (경상남도농업기술원 수출농식품연구과) ;
  • 장영호 (경상남도농업기술원 수출농식품연구과) ;
  • 손길만 (경상남도농업기술원 수출농식품연구과) ;
  • 황승재 (경상대학교 원예학과) ;
  • 김광수 (서울시립대학교 환경원예학과) ;
  • 이한철 (국립원예특작과학원 시설원예시험장)
  • Received : 2012.07.29
  • Accepted : 2012.08.10
  • Published : 2012.09.30

Abstract

This study was carried out to investigate the effect of irrigation methods for reducing a drainage on the growth and yield in rockwool (Grodan co.) and cocopeat (chip : dust = 50 : 50 included fiber) culture. The nutrient solution was irrigated by $100J{\cdot}cm^{-2}$-100 mL, $50J{\cdot}cm^{-2}$-45 mL, $50J{\cdot}cm^{-2}$-40 mL, $50J{\cdot}cm^{-2}$-35 mL ($100{\sim}50J{\cdot}cm^{-2}$-100~35 mL, Nutrient solution 100~35 mL was irrigated per plant when the accumulated radiation was $100{\sim}50J{\cdot}cm^{-2}$). The drain rates per plant of 100-100, 50-45, 50-40, 50-35 were 26.3%, 8.8%, 6% 4.4% and 23.1%, 7.5%, 5% 3.4% in rockwool and cocopeat slabs. The water contents and EC of 100-100 and 50-45 were managed by the 55~70%, $3.0{\sim}5.0dS{\cdot}m^{-1}$ which were good condition for paprika culture in rockwool and cocopeat slabs, while those of 50-40 and 50-35 were managed by beyond 50%, $4.5{\sim}9.5dS{\cdot}m^{-1}$. The plant height, number of branches and leaf size of 100-100 and 50-45 were similarly increased while those of 50-40 and 50-35 were decreased. The fruit size and weight of 50-40 and 50-35 were small and light, while those of 100-100 and 50-45 were similarly big and heavy. The marketable fruits of 100-100 and 50-45 treatments were similarly more by 9.7~9.8 in rockwool and 8.8~8.9 in cocopeat, while the unmarketable fruits, the small and blossom end rot fruits were increased in 50-40 and 50-35 treatments. The yield of 100-100 and 50-45 treatments were similarly high.

파프리카 수경재배의 배액량을 감소시키기 위한 양액공급 방법이 파프리카 생육과 수량에 미치는 영향을 검토코자 Rockwool과 Cocopeat 배지를 사용하여 누적광량 당 주당 1회 양액공급량을 100-100($100J{\cdot}cm^{-2}$-100mL irrigation per plant, 30% drainage), 50-45, 50-40, 50-35로 조절하여 공급하였다. 주당 일일 배액량과 배액율은 Rockwool 배지에서는 100-100 처리가 241.0mL 26.3%, 50-45 처리가 65.5mL 8.8%, 50-40 처리가 39.2mL 6.0%, 그리고 50-35 처리가 26.2mL 4.4%였고, Cocopeat 배지에서는 100-100 처리가 187.1mL 23.1%, 50-45 처리가 55.9mL 7.5%, 50-40 처리가 32.6mL 5.0%, 그리고 50-35 처리가 20.2mL 3.4%였다. 처리별 함수율은 100-100 처리와 50-45 처리가 Rockwool에서 55~65%, 그리고 Cocopeat는 60~70% 정도로 생육에 적당한 수준의 함수율을 유지하였지만, 50-40과 50-35 처리에서는 양액공급량이 줄어들수록 대부분 적정 수준 이하로 낮아졌고, Cocopeat보다는 Rockwool 배지에서 변화의 폭이 컸다. 슬래브 EC는 100-100 처리와 50-45 처리가 $3.0{\sim}5.0dS{\cdot}m^{-1}$의 파프리카 생육 적정 범위에서 비슷하게 유지되었다. 50-40 처리는 $4.5{\sim}6.5dS{\cdot}m^{-1}$, 50-35 처리는 $6.5{\sim}9.5dS{\cdot}m^{-1}$로 파프리카 적정 생육 EC 범위보다 높은 수준을 유지하였으며 배지간에는 Rockwool이 Cocopeat 배지보다 높았다. 초장과 분지수는 100-100 처리와 50-45 처리가 초장이 길고 분지수가 증가하였으며, 공급량이 감소할수록 초장이 짧고 분지수가 감소하였다. 잎 크기는 100-100 처리와 50-45 처리가 컸고, 양액공급량이 감소할수록 작았다. 과실크기와 평균과중은 100-100 처리와 50-45 처리가 가장 크고 무거웠으며, 양액공급량이 줄어들수록 감소하였다. 상품율과 상품과수는 100-100과 50-45 처리에서 높고 많았으며, 50-35처리가 가장 낮고 적었다. 비상품과수는 양액공급량이 적었던 50-35 처리에서 소과와 배꼽썩음과의 발생이 많았고, 100-100과 50-45 처리는 비슷한 수준이었다. 수량은 100-100, 50-45 처리에서 높았고, 양액공급량이 줄어들수록 감소하였다.

Keywords

References

  1. Adams, P. 1991. Effects of increasing the salinity of the nutrient solution with major nutrients or sodium chloride on the yield, quality and composition of tomatoes grown in rockwool. J. Horatio. Sci. 66:210-207.
  2. Aljibury, F.K. and D. May. 1970. Irrigation schedules and production of processing tomatoes on the San Joaquin Valley Westside Calif. Agar. 24(8):10-11.
  3. Ammerlaan, J.C.J. 1993. Environment-conscious production system in Dutch glasshouse horticulture. Paper at ISHS International Symposium on New Cultivation System in Greenhouse. Caqliari. Italy.
  4. An, C.G., D.S. Kang, C.W. Rho, and B.R. Jeong. 2002. Effects of transplanting method of seedlings on the growth and yield of paprika. Kor. J. Hort. Sci. Technol. 20:15-18.
  5. An, C.G., Y.H. Hwang, G.M. Shon, C.S. Lim, J.L. Cho, and B.R. Jeong. 2009. Effects of Irrigation amount in rockwool and cocopeat substrates on growth and fruiting of sweet pepper during fruiting period. Kor. J. Hort. Sci. Technol. 27(2):233-238.
  6. Bar-Tal, A. and E. Pressman. 1996. Root restriction and potassium and calcium solution concentrations affect dry matter production, calcium uptake and blossom end rot in greenhouse tomato. J. Amer. Soc. Hort. Sci. 121:649-55.
  7. Benoit, F. 1992. Practical guide for simple soilless culture techniques. Europ. Vegetable R & D Centre, Belgium. p. 28-37.
  8. Choi, K.Y., M.J. Kang, Y.B. Lee, S.O. Yoo, and J.H.Bae. 2001. Development of optimum nutrient solution for sweet pepper substrate culture in closed system. J. Kor. Soc. Hort. Sci. 42(5):513-518.
  9. Doyle, A.S., W.L. Dickens, and J.R. Stansell. 1994. Irrigation regimes affect yield and water use by bell pepper. J. Amer. Soc. Hort. Sci. 119:936-939.
  10. Kim. H.J., J.H. Kim, Y.H. Woo, W.S. Kim, and Y.I. Nam. 2001. Nutrient and water uptake of tomato plants by growth stage in closed perlite culture. J. Kor. Soc. Hort. Sci. 42:254-258.
  11. Kuriyama, T. 1996. Influence of quantitative control of nutrient solution on yield and Brix of fruit juice in ash ball culture of tomato. Res. Bull. Kyushu Branch of the Japan. Soc. Hort. Sci. 4:85-86.
  12. Hayata, Y., T. Tabe, S. Kondo, and K. Inoue. 1998. The effects of water stress on the growth, sugar and nitrogen content of cherry tomato fruit. J. Japan. Soc. Hort. Sci. 65:759-766.
  13. Ito, H. and S. Kawai. 1994. Effects of watering control on the fruit qualities of tomato and cherry tomato. Res. Bull. Aichi Agric. Res. Center 26:191-199.
  14. Lee, E.H., B.Y. Lee, Y.B. Lee, Y.S. Kwon, and J.W. Lee. 1998. Nitrate content and activities of nitrate reductase and glutamine synthease as affected by ionic strength, nitrate concentration, ratio of nitrate to ammonium in nutrient solution for culture of leaf lettuce and water dropwort. J. Kor. Soc. Hort. Sci. 39:161-165.
  15. Li, X.R., H.N. Cao, K.C. Yoo, and I.S. Kim. 2001. Effect of limited supplying frequency and amount of nutrient solutions on the yield and fruit quality of tomato grown in ash ball. J. Kor. Soc. Hort. Sci. 42: 501-505.
  16. Martin, P.E., J.C. Lingle, R.M. Hagan, and W.J. Flocker. 1970. Irrigation of tomatoes in a single harvest program. Calif. Agr. 6:13-14.
  17. Ootake, Y., Y. Ban, Y. Tanaka, and G. Hayashi. 1994. Changes of chemical constituents in tomato fruit in relation to soil moisture. Res. Bull. Aichi Agric. Center 26:209-212.
  18. Rao, K.P. and D.W. Rains. 1976. $NO_{3}$ − absorption by barley. 2. Influence of NRA. Plant Physiol. 57:59-62. https://doi.org/10.1104/pp.57.1.59
  19. Roh, M.Y. and Y.B. Lee. 2001. Amount of water absorption, net $CO_{2}$ assimilation rate, growth, and yield of cucumber plants as affected by irrigation control method in substrate culture. J. Kor. Soc. Hort. Sci. 42:38-42.
  20. Rural Development Administration (RDA). 1997. Theory and application to cultivation of crop physiology. pp. 304-330.
  21. Schon, M.K. and M.P. Compton. 1997. Comparison of cucumbers grown in rockwool or perlite at two leaching fractions. Hort Technology 7:30-33.
  22. Shimaji, H. 1990. Control equipments on soilless culture. Agriculture and Hort. 65:104-110.
  23. Shinohara, Y., K. Akiba, T. Maruo, and T. Ito. 1995. Effect of water stress on the fruit yield, quality and physiological condition of tomato plants using gravel culture. Acta Hortic. 396:211-218.
  24. Smith, D.L. 1988. Rockwool in horticulture. pp. 24-72. Grower Books, London.
  25. Tadesse, T., M.A. Nichols, and K.J. Fisher. 1999. Nutrient conductivity effects on sweet pepper plants grown using a nutrient film technique. 2. Blossom-end rot and fruit mineral status. J. New Zealand Crop Hort. Sci. 27:239-247. https://doi.org/10.1080/01140671.1999.9514102
  26. Xu, H.L., L. Gauthier, and A. Gosselin. 1997. Greenhouse tomato photosynthetic accumulation to water deficit and response to salt accumulation in the substrate. J. Japan. Soc, Hort. Sci. 65:777-784. https://doi.org/10.2503/jjshs.65.777