• Title/Summary/Keyword: Root density

Search Result 720, Processing Time 0.025 seconds

Variations of the stress intensity factors for a planar crack parallel to a bimaterial interface

  • Xu, Chunhui;Qin, Taiyan;Yuan, Li;Noda, Nao-Aki
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.317-330
    • /
    • 2008
  • Stress intensity factors for a planar crack parallel to a bimaterial interface are considered. The formulation leads to a system of hypersingular integral equations whose unknowns are three modes of crack opening displacements. In the numerical analysis, the unknown displacement discontinuities are approximated by the products of the fundamental density functions and polynomials. The numerical results show that the present method yields smooth variations of stress intensity factors along the crack front accurately. The mixed mode stress intensity factors are indicated in tables and figures with varying the shape of crack, distance from the interface, and elastic constants. It is found that the maximum stress intensity factors normalized by root area are always insensitive to the crack aspect ratio. They are given in a form of formula useful for engineering applications.

Frequency Estimation of Multiple Sinusoids From MR Method (MR 방법으로부터 다단 정현파의 주파수 추정)

  • 안태천;탁현수;이종범
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.2
    • /
    • pp.18-26
    • /
    • 1992
  • MR(Model Reduction) is presented in order to estimate the frequency of multiple sinusoids from the finite noisy data with the white or colored noises. MR, using the reduced rank models, is designed, appling the approximation of linear system to LP(Linear Prediction). The MR method is analyzed. Monte-carlo simulations are conducted for MR and Lp. The results are compared with in terms of mean, root-mean square and relative bias. MR eliminates effectevely the extremeous and exceptional poles appearing in LP and improves the accuracy of LP. Especially, MR gives promising results in short noisy measurements, low SNR's and colored noises. Power spectral density and angular frequency position are showed by figures, for examples. Finally, the new method is utilized to the communication and biomedical systems estimating the characteristics of the signal and the system identification modelling the dynamic systems from experimental data.

  • PDF

Effect of viscous damping force subjected to a rotating flexible disk (점성감쇠력이 회전탄성원판에 미치는 영향)

  • Kong, Dae-Wee;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.185-190
    • /
    • 2001
  • Rotating disks are used in various machines such as floppy disks, hard disk, turbines and circular sawblades. The problems of vibrations of rotating disks are important in improving these machines. Many investigators have dealt with these problem. Specially, vibrations of a rotating flexible disk taking into account the effect of air is difficult problem in simulation. The governing equation of a rotating flexible disk coupled to the surrounding fluid is investigated by a simple mathematical model. And several important parameters concerned with the stability of a rotating flexible disk are defined. Coupling strength between air and rotating flexible disk is proportional to square of disk radius directly and square root of the all of bending rigidity, disk density and thickness inversely. Lift-to-damping coefficient has relation to the onset of disk flutter.

  • PDF

A Study on the Measurement of the Fluid Viscosity by Using the Torsional Vibration of a Circular Rod (원형 봉의 비틀림 진동에 의한 유체 점도 측정 연구)

  • Chun, Han-Yong;Kim, Jin-Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1016-1025
    • /
    • 2002
  • This paper deals with the measurement of the fluid viscosity by using the torsional vibration of a circular rod excited by a torsional vibrator at one end. The effect of an adjacent viscous fluid on the torsional vibration of the rod has been studied theoretically and expressed in terms of the mechanical impedance. The theoretically-obtained trend that the mechanical impedance is proportional to the square root of the viscosity times the density of the fluid has been confirmed by the impedance measurement. The paper demonstrates that a torsionally-vibrating rod can be used as a sensor to measure the viscosity of a fluid.

Vibration Analysis of A Rotating Cantilever Blade with Multiple Concentrated Masses with an Elastically Restrained Root (다중 집중질량효과에 의한 탄성 회전 블레이드의 진동해석)

  • Yun Kyung-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.4 s.19
    • /
    • pp.114-124
    • /
    • 2004
  • In this paper, we have proposed a novel method which can analysis a rotating elastically restrained blade with concentrated masses located in an arbitrary position. 1:he equations of motion are derived and transformed into a dimensionless form to investigate general phenomena. For the modeling of the multi-concentrated masses, the Dirac delta function is used for the mass density function. Simulation results show that the vibration characteristics of elastic restrained blade of according to dimensionless variables for example, multiple masses magnitude and mass location ratio. This method can be applied to an practical rotating blade system required to more accurate results.

RMS Current Estimation Technique for Reliability Analysis of Multiple Semiconductor Interconnects (신뢰성 해석을 위한 반도체 다중연결선의 RMS 전류 추정 기법)

  • Kim, Ki-Young;Kim, Deok-Min;Kim, Seok-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1547-1554
    • /
    • 2011
  • As process parameters scale, interconnect width are reduced rapidly while the current flowing through interconnects does not decrease in a proportional manner. This effect increases current density in metal interconnects which may result in poor reliability. Since RMS(root-mean-square) current limits are used to evaluate self-heating and short-time stress failures caused by high-current pluses, RMS current estimation is very important to guarantee the reliability of semiconductor systems. Hence, it is critical to estimate the current limits through interconnects earlier in semiconductor design stages. The purpose of this paper is to propose a fast, yet accurate RMS current estimation technique that can offer a relatively precise estimate by using closed-form equations. The efficiency and accuracy of the proposed method have been verified through simulations using HSPICE for a vast range of interconnect parameters.

Measurement of time-dependent sheath for the negative voltage pulse with a finite rise time (유한 오름 시간을 갖는 음전위 펄스에서 시변환 플라즈마 덮개의 거동 연구)

  • 김곤호;김영우;김건우;한승희;홍문표
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.361-367
    • /
    • 1999
  • It was observed that the time-dependent sheath which was formed around the planar target biased by negatively voltage pulse with a finite rise time in the plasma source ion implantation. F\Results show that the time-dependent sheath consisted of two parts: the ion matrix sheath development during the pulse rise time and the dynamic sheath motion after attaining the full pulse. The ion matrix sheath development which is in proportion to square root of the pulse time and the pulse rise rate over the plasma density but independent of the ion mass. The dynamic sheath propagates with approximately the ion sound speed.

  • PDF

Earthquake response spectra estimation of bilinear hysteretic systems using random-vibration theory method

  • Yazdani, Azad;Salimi, Mohammad-Rashid
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1055-1067
    • /
    • 2015
  • A theoretical procedure to estimate spectral displacement of a hysteretic oscillator with bilinear stiffness excited by band-limited excitation is presented. The stochastic method of ground-motion simulation is combined with the random vibration theory to compute linear and nonlinear structural response. The response is obtained by computing the root-mean-square oscillator response using dissipation energy balancing by integrating over all energy levels of system weighting with the stationary probability density of the energy. The results are presented in a convenient form, and the accuracy of the procedure is assessed by comparison with results obtained with the time-domain method using the recorded data. The model shows little or no bias at the structural period of engineering interest.

Generation of a adaptive tetrahedral refinement mesh for GaAs full band monte carlo simulation (풀밴드 GaAs monte carlo 시뮬레이션을 위한 최적사면체격자의 발생)

  • 정학기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.7
    • /
    • pp.37-44
    • /
    • 1997
  • A dadaptive refinement tetrahedron mesh has been presented for using in full band GaAs monte carlo simulation. A uniform tetrahedron mesh is used without regard to energy values and energy variety in case of the past full band simulation. For the uniform tetrahedron mesh, a fine tetrahedron is demanded for keeping up accuracy of calculation in the low energy region such as .GAMMA.-valley, but calculation time is vast due to usin gthe same tetrahedron in the high energy region. The mesh of this study, thererfore, is consisted of the fine mesh in the low energy and large variable energy region and rough mesh n the high energy. The density of states (DOS) calculated with this mesh is compared with the one of the uniform mesh. The DOS of this mesh is improved th efive times or so in root mean square error and the ten times in the correlation coefficient than the one of a uniform mesh. This refinement mesh, therefore, can be used a sthe basic mesh for the full band GaAs monte carlo simulation.

  • PDF

Statisticall Characteristics of Sea Waves at Mookho (묵호항의 파랑특성)

  • 심명필;안수한
    • Water for future
    • /
    • v.10 no.1
    • /
    • pp.101-117
    • /
    • 1977
  • The statatistical characteristics and spectra of sea waves at Mookho were analysed by several statistical methods. As the results, the following conclusions are obtained: 1. Values of surface elevation of sea wave are better fitted to Gram Charlier distribution than Gaussian distribution. This proves that sea waves have not only characters of irregularity but also non-linearity. 2. Distribution of maxima of surface elevation practically follows the distribution of Cartwright and Longuet-Higgins, also spectral width parameter is found to be increased with the increase of root mean square of surface elevation. 3. Sea wave may have spectrum of broad frequency band, however distributions of wave heights and periods follow the Rayleigh distribution which is derived from the assumption of narrow frequency band. 4. Ratios among mean wave heights from observed data show good agreements with theoretical values from Rayleigh distribution. 5. Spectral density and spectral width parameter increase with increase of wind velocity. And wave period at optimum band gas higher value than significant wave period by about 10 percent.

  • PDF