Vibration Analysis of A Rotating Cantilever Blade with Multiple Concentrated Masses with an Elastically Restrained Root

다중 집중질량효과에 의한 탄성 회전 블레이드의 진동해석

  • Published : 2004.12.01

Abstract

In this paper, we have proposed a novel method which can analysis a rotating elastically restrained blade with concentrated masses located in an arbitrary position. 1:he equations of motion are derived and transformed into a dimensionless form to investigate general phenomena. For the modeling of the multi-concentrated masses, the Dirac delta function is used for the mass density function. Simulation results show that the vibration characteristics of elastic restrained blade of according to dimensionless variables for example, multiple masses magnitude and mass location ratio. This method can be applied to an practical rotating blade system required to more accurate results.

Keywords

References

  1. Southwell, R, Gough, F., 'The Free Tninverse Vibration of Airscrew Blades', 1921 British ARC. Reports and Memoranda No. 766
  2. Boyce, W. E., 'Effect of Hub Radius on the Vibrations of a Uniform Bar', 1956, ASME J. of Applied Mechanics, Vol. 23, pp.283-290
  3. Afolabi, D., 'Natural Frequencies of Cantilever Blades with Rasilent Roots', 1986, J. of Sound and Vibration, Vol. 110, pp.429-441
  4. Abbas, B. A. H., 'Dynamic Analysis of Thick Rotating Blades with Flexible Roots', 1985, The Aeronautical Journal, Vol. 89, pp.10-16
  5. Lee, S. Y., Lin, S. M., 'Bending Vibration of Rotating Nonuniform Timoshenko Beam with an Elastically Restrained Root', 1994, ASME, J. of Applied Mechanics, Vol. 61, pp.949-955 https://doi.org/10.1115/1.2901584
  6. K. Y. Ke., S. Y. Lee., 'Free Vibrations of a Non-Uniform Beam with General Elastically Restrained Boundary Conditions', 1990, J. of Sound and Vibration, Vol. 136, No.3, pp.425-437 https://doi.org/10.1016/0022-460X(90)90454-8
  7. G. V. Rao., K. Raju., 'Vibration Frequencies of a Tapered Beam with One End Spring-Hinged and Carrying a Mass at the Other Free End', 1975, ASME J. of Applied Mehanics, Vol. 42, No.3, pp.740-741 https://doi.org/10.1115/1.3423679
  8. T. W. Lee., 'Transverse Vibrations of a Tapered Beam Carrying a Concentrated Mass', 1976, ASME J. of Applied Mechanics, Vol. 43, No.2, pp.366-367 https://doi.org/10.1115/1.3423846
  9. P. A. A. Laura., R. H. Gutierrez., 'Vibrations of an Elastically Restranied Cantilever Beam of Varying Cross Section with Tip Mass of Finite Length', 1986, J. of Sound and Vibration, Vol. 108, No.1, pp.123 -131 https://doi.org/10.1016/S0022-460X(86)80316-9
  10. R. E. Rossi., H. Larrondo, 'Free Vibrations of Timoshenko Beams Carrying Elastically Mounted Concentrated Masses', 1993, J. of Sound and Vibration, Vol. 165, No.2, pp.209 -223 https://doi.org/10.1006/jsvi.1993.1254
  11. Yoo, H. H., Shin, S. H., 'Vibration Analysis of Rotating Cantilever Beams', 1998, J. of Sound and Vibration, Vol. 212, No.5, pp.807-828 https://doi.org/10.1006/jsvi.1997.1469
  12. 윤경재, 유홍희, “지지부의 탄성효과를 고려한 회전 외팔 보의 진동해석, 2000, 한국소음진동 학회 논문집, 제 10권 제6호,pp.1022 -1028
  13. 윤경재, “공진 주파수 영역에서 탄성지지단의 마찰감쇠효과를 고려한 회전 블레이드의 과도응답 해석', 2003, 한국군사과학기술학회지, 제6권 제4호, pp.100-112