• Title/Summary/Keyword: Root Rot Disease

Search Result 229, Processing Time 0.025 seconds

Effect of Green Manure Incorporation and Solarization on Root Rot Disease of 3-year-old Ginseng in Soil of Continuous Cropping Ginseng (녹비작물 토양환원과 태양열 소독에 의한 3년생 인삼의 뿌리썩음병 억제효과)

  • Seo, Mun Won;Lee, Sung Woo;Lee, Seung Ho;Jang, In Bok;Heo, Hye Ji
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.4
    • /
    • pp.284-291
    • /
    • 2019
  • Background: Ginseng root rot disease, caused by Cylindrocarpon destructans and Fusarium solani is a major cause of replant failure in continuous cropping ginseng. Methods and Results: To control replant injury in soil infected with C. destructans and F. solani, biosolarization was performed by covering the plot with transparent polyethylene film after adding green manure of maize and sunflower for the summer season. Per 10 a, fresh and dry weight of maize was 10.1 and 2.5 tons, respectively, and that of sunflower was 8.1 tons and 1.2 tons, respectively. Mean maximum temperature at 20 cm depth was $33.2^{\circ}C$, $41.5^{\circ}C$ and $41.8^{\circ}C$ in the control, maize-incorporated and sunflower-incorporated plots, respectively. The elapsed time over $40^{\circ}C$ was 36.4 h in the maize-incorporated plot and 77.3 h in the sunflower-incorporated plot. Biosolarization increased $NO_3$ content in soil, while content of organic matter, Ca, and Mg was decreased. Electrical conductivity, $NO_3$ and $P_2O_5$ in soil significantly increased after two years of biosolarization. The number of spores of C. destructans in soil was significantly decreased by biosolarization, and sunflower treatment was more effective than maize treatment in decreasing the number of spores. Root yield of 3-year-old ginseng was significantly increased by biosolarization, however, there was no significant difference between maize and sunflower treatments. Rate of root rot in 3-year-old ginseng decreased to 16.5% with the incorporation maize and 5.0% with the incorporation of sunflower, while that in control 25.6%. Conclusions: Biosolarization was effective in inhibiting ginseng root rot by decreasing the density of root rot disease and improving soil chemical properties.

Effects of Irrigation and Ginseng Root Residue on Root Rot Disease of 2-Years-Old Ginseng and Soil Microbial Community in the Continuous Cropping Soil of Ginseng (인삼 연작토양에서 관수 및 인삼뿌리 잔사물이 토양 미생물상 및 뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Lee, Seung Ho;Seo, Moon Won;Park, Kyung Hoon;Jang, In Bok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.5
    • /
    • pp.345-353
    • /
    • 2018
  • Background: Some phenolics detected in the soil may inhibit the seed germination and seedling growth of ginseng (Panax ginseng). This study investigated the effect of irrigation and ginseng root residue addition on the soil microbial community and root rot disease in 2-year-old ginseng. Methods and Results: Each $20{\ell}$ pot was filled with soil infected with ginseng root rot pathogens, and irrigated daily with $2{\ell}$ of water for one month. After the irrigation treatment, ginseng fine root powder was mixed with the irrigated soil at a rate of 20 g per pot. In descending order, ${NO_3}^-$, electric conductivity (EC), exchangeable Na (Ex. Na) and K (Ex. K) decreased due to irrigation. In descending order, ${NO_3}^-$, EC, Ex. K, and available $P_2O_5$ increased with the additon of ginseng powder to the soil. The abundance of Trichoderma crassum decreased with irrigation, but increased again with the incorporation of ginseng powder. The abundance of Haematonectria haematococca increased with irrigation, but decreased with the incorporation of ginseng powder. The abundance of Cylindrocarpon spp. and Fusarium spp., which cause ginseng root rot, increased with the incorporation of ginseng powder. The abundance of Arthrobacter oryzae and Streptomyces lavendulae increased with irrigation. The abundance of Streptomyces lavendulae decreased, and that of Arthrobacter spp. increased, with the incorporation of ginseng powder. Aerial growth of ginseng was promoted by irrigation, and ginseng root rot increased with the incorporation of ginseng powder. Conclusions: Ginseng root residues in the soil affected soil nutrients and microorganisms, and promoted ginseng root rot, but did not affect the aerial growth of ginseng.

Biological Efficacy of Endophytic Bacillus velezensis CH-15 from Ginseng against Ginseng Root Rot Pathogens (인삼내생균 Bacillus velezensis CH-15의 인삼뿌리썩음병 방제 효과)

  • Kim, Dohyun;Li, Taiying;Lee, Jungkwan;Lee, Seung-Ho
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.19-25
    • /
    • 2022
  • Ginseng is an important medicinal plant cultivated in East Asia for thousands of years. It is typically cultivated in the same field for 4 to 6 years and is exposed to a variety of pathogens. Among them, ginseng root rot is the main reason that leads to the most severe losses. In this study, endophytic bacteria were isolated from healthy ginseng, and endophytes with antagonistic effect against ginseng root rot pathogens were screened out. Among the 17 strains, three carried antagonistic effect, and were resistant to radicicol that is a mycotoxin produced by ginseng root rot pathogens. Finally, Bacillus velezensis CH-15 was selected due to excellent antagonistic effect and radicicol resistance. When CH-15 was inoculated on ginseng root, it not only inhibited the mycelial growth of the pathogen, but also inhibited the progression of disease. CH-15 also carried biosynthetic genes for bacillomycin D, iturin A, bacilysin, and surfactin. In addition, CH-15 culture filtrate significantly inhibited the growth and conidial germination of pathogens. This study shows that endophytic bacterium CH-15 had antagonistic effect on ginseng root rot pathogens and inhibited the progression of ginseng root rot. We expected that this strain can be a microbial agent to suppress ginseng root rot.

Crown and Root Rot of Strawberry Caused by Neopestalotiopsis clavispora in Korea (Neopestalotiopsis clavispora에 의한 딸기 뿌리썩음병 한국 내 발생)

  • Park, Kyoungmi;Han, Inyoung;Lee, Seok-Min;Choi, Si-Lim;Kim, Min Chul;Lee, Heungsu
    • The Korean Journal of Mycology
    • /
    • v.47 no.4
    • /
    • pp.427-435
    • /
    • 2019
  • The occurrence of the crown and root rot on strawberry (Fragaria×ananassa Duch.) has been reported in greenhouses in Sancheong and Hamyang, Gyeongnam province, Korea in June, 2019. The infected plants showed browning rot of the inner crown and root, causing delayed development, lack of growth, and poor rooting. The browning rot of the inner crown and root can sometimes lead to wilting and collapsing of plants. Fungi were isolated from the symptomatic root and crown. Based on the results of morphological and phylogenetic analyses, the causal agent of the disease was identified to be Neopestalotiopsis clavispora. The fungal isolates were then used for inoculation into strawberry plants to determine the causal agent of the crown and root rot as per Koch's postulates. The inoculated strawberry plants showed the same symptoms as the originally infected plants, and the fungal pathogen re-isolated from the lesions showed the same morphological characteristics as the original pathogen. This is the first report on the occurrence of crown and root rot on strawberry (Fragaria×ananassa Duch.) caused by N. clavispora in Korea.

Root Rot of Moth Orchid Caused by Fusarium spp.

  • Kim, Wan-Gyu;Lee, Byung-Dae;Kim, Woo-Sik;Cho, Weon-Dae
    • The Plant Pathology Journal
    • /
    • v.18 no.4
    • /
    • pp.225-227
    • /
    • 2002
  • Moth orchid plants with yellowing blight and root rot symptoms were collected, and a total of 54 isolates of Fusarium spp. was obtained from roots and leaf bases of the diseased plants. The isolates were identified based on their morphological characteristics. Out of the 54 isolates of Fusarium spp., 42 isolates were identified as F. solani, 5 isolates as F. oxysporum, and 7 as F. proliferatum. Isolates of the three Fusarium spp. were tested for pathogenicity to moth orchid plants by artificial inoculation. All the Fusarium spp. induced root rot of the host plants. The symptoms progressed up to the basal part of the leaves, which later caused yellowing blight. The symptoms induced on the plants by artificial inoculation with the Fusarium spp. isolates were similar to those observed in greenhouses. The present study reveals that F. oxysporum, F. proliferatum, and F. solani cause root rot of moth orchid, and that F. solani is the main pathogen of the disease.

Effect of Crop Rotation System on Soil Chemical Properties and Ginseng Root Rot after Harvesting Ginseng (인삼 연작지에서 윤작물 작부체계가 토양화학성 및 인삼뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Lee, Seung Ho;Park, Kyung Hoon;Jang, In Bok;Jin, Mei Lan;Seo, Moon Won
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.244-251
    • /
    • 2017
  • Background: The application of crop rotation systems may reduce the occurrence of soil-borne diseases by releasing allelochemicals and by subsequent microbial decomposition. Methods and Results: For reduction of ginseng root rot by the crop rotation system, after harvesting 6-year-old ginseng, fresh ginseng was grown along with continuous cultivation of sweet potato, peanut, and bellflower. Growth of 2-year-old ginseng was significantly inhibited in the continuous cultivation than in the first cultivation. Sweet potato, peanut and bellflower cultivations assisted in obtaining normal yields of ginseng in the first year after the harvest of 6-year-old ginseng. Salt concentration, potassium and sodium contents were gradually decreased, and, organic matter was gradually increased through cirp rotation. Phosphate, calcium and magnesium contents were not altered. The density of the root rot fungus was gradually decreased by the increase in crop rotation; however it was decreased distinctly in the first year compared to the second and third year. The severity of root rot disease tended to decrease gradually by the increase of crop rotation. Conclusions: Short-term crop rotation for three years promoted the growth of ginseng, however root rot infection was not inhibited significantly, although it was somewhat effective in lowering the density of the root rot pathogen.

Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum

  • Song, Minjae;Yun, Hye Young;Kim, Young Ho
    • Journal of Ginseng Research
    • /
    • v.38 no.2
    • /
    • pp.136-145
    • /
    • 2014
  • Background: This study aimed to develop a biocontrol system for ginseng root rot caused by Fusarium cf. incarnatum. Methods: In total, 392 bacteria isolated from ginseng roots and various soils were screened for their antifungal activity against the fungal pathogen, and a bacterial isolate (B2-5) was selected as a promising candidate for the biocontrol because of the strong antagonistic activity of the bacterial cell suspension and culture filtrate against pathogen. Results: The bacterial isolate B2-5 displayed an enhanced inhibitory activity against the pathogen mycelial growth with a temperature increase to $25^{\circ}C$, produced no pectinase (related to root rotting) an no critical rot symptoms at low [$10^6$ colony-forming units (CFU)/mL] and high ($10^8CFU/mL$) inoculum concentrations. In pot experiments, pretreatment with the bacterial isolate in the presumed optimal time for disease control reduced disease severity significantly with a higher control efficacy at an inoculum concentration of $10^6CFU/mL$ than at $10^8CFU/mL$. The establishment and colonization ability of the bacterial isolates on the ginseng rhizosphere appeared to be higher when both the bacterial isolate and the pathogen were coinoculated than when the bacterial isolate was inoculated alone, suggesting its target-oriented biocontrol activity against the pathogen. Scanning electron microscopy showed that the pathogen hyphae were twisted and shriveled by the bacterial treatment, which may be a symptom of direct damage by antifungal substances. Conclusion: All of these results suggest that the bacterial isolate has good potential as a microbial agent for the biocontrol of the ginseng root rot caused by F. cf. incarnatum.

Environmental Factors on the Development of Root Rot on Ginseng Caused by Cylindrocarpon destructans (인삼 뿌리썩음병 발병에 미치는 환경 요인)

  • Lee, Jung Sup;Han, Kyung Sook;Lee, Seong Chan;Soh, Jae Woo;Kim, Doo Wook
    • Research in Plant Disease
    • /
    • v.20 no.2
    • /
    • pp.87-94
    • /
    • 2014
  • The fungus Cylindrocarpon destructans is the cause of root rot in many ginseng production areas in Korea. A total of 57 isolates of C. destructans were recovered from diseased roots in a survey of ginseng-growing fields from 2011-2012. Among these isolates, 37% were classified as highly virulent (causing lesions on unwounded mature roots) and 61% were weakly virulent(causing lesions only on previously wounded roots). Radial growth of highly and weakly virulent isolates on potato dextrose agar was highest at $20^{\circ}C$ and there was no growth at $35^{\circ}C$. Mycelial mass production was significantly (P = 0.05) lower at pH 7.0 compared with pH 5.0. To study the effects of pH (5.0 and 7.0) and wounding on disease development, ginseng roots were grown hydroponically in nutrient solution. Lesions were significantly larger (P < 0.01) at pH 5.0 compared with pH 7.0 and wounding enhanced disease by a highly virulent isolate at both pHs. In artificially infested soil, 2-yearold ginseng roots were most susceptible to Cylindrocarpon root rot among all root ages tested (1 to 4 years) when evaluated using a combined scale of disease incidence and severity. Root rot severity was significantly (P<0.05) enhanced by increasing the inoculum density from $3.5{\times}10^2cfu/g$ of soil to $2.0{\times}10^3cfu/g$ of soil.

Effect of Green Manure Crop Cultivation on Soil Chemical Properties and Root Rot Disease in Continuous Cropping Field of Ginseng (녹비작물 재배가 토양화학성 및 인삼뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Park, Kyung Hoon;Lee, Seung Ho;Jang, In Bok;Jin, Mei Lan
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Background: Some plants have harmful effects on fungi and bacteria as well as other plants. Incorporating such plant into soil as green manure is effective in reducing population densities of soil pathogens. Methods and Results: Twenty-three species of green manure crops were cultivated after the harvest of 6-year-old ginseng and then incorporated into the soil at the flowering stage. The following year, the root rot ratio of 2-year-old ginseng and soil chemical properties were investigated. In the absence of green manure addition, the $NO_3$ content, electric conductivity (EC), and K content decreased by 95%, 79% and 65%, respectively. In the presence of green manure addition, $P_2O_5$ and $NO_3$ contents reduced by 41% and 25%, respectively. The "survived root ratio" of 2-year-old ginseng significantly increased by 56.2%, 47.5%, and 47.3%, in the Sorghum sudanense, Ricinus communis and Helianthus tuberosus treatment, respectively. In addition, there was a significant increase in the "survived root ratio" in the Secale cereale, Chrysanthemum morifolium, Atractylodes macrocephala, and Smallanthus sonchifolius treatments. The "survived root ratio" of ginseng showed a significant positive correlation with the soil pH and a negative correlation with the $NO_3$ contents, and EC. Conclusions: Cultivation of plant form the Chrysanthemum family as green manure, using mainly the rhizomes was effective for the control of root rot disease of ginseng.

Variation in the Resistance of Japanese Soybean Cultivars to Phytophthora Root and Stem Rot during the Early Plant Growth Stages and the Effects of a Fungicide Seed Treatment

  • Akamatsu, Hajime;Kato, Masayasu;Ochi, Sunao;Mimuro, Genki;Matsuoka, Jun-ichi;Takahashi, Mami
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.219-233
    • /
    • 2019
  • Soybean cultivars susceptible to Phytophthora root and stem rot are vulnerable to seed rot and damping-off of seedlings and young plants following an infection by Phytophthora sojae. In this study, the disease responses of Japanese soybean cultivars including currently grown main cultivars during the early growth stages were investigated following infections by multiple P. sojae isolates from Japanese fields. The extent of the resistance to 17 P. sojae isolates after inoculations at 14, 21, and 28 days after seeding varied significantly among 18 Japanese and two US soybean cultivars. Moreover, the disease responses of each cultivar differed significantly depending on the P. sojae isolate and the plant age at inoculation. Additionally, the treatment of 'Nattosyo-ryu' seeds with three fungicidal agrochemicals provided significant protection from P. sojae when plants were inoculated at 14-28 days after seeding. These results indicate that none of the Japanese soybean cultivars are completely resistant to all tested P. sojae isolates during the first month after sowing. However, the severity of the disease was limited when plants were inoculated during the later growth stages. Furthermore, the protective effects of the tested agrochemicals were maintained for at least 28 days after the seed treatment. Japanese soybean cultivars susceptible to Phytophthora root and stem rot that are grown under environmental conditions favorable for P. sojae infections require the implementation of certain practices, such as seed treatments with appropriate agrochemicals, to ensure they are protected from P. sojae during the early part of the soybean growing season.