DOI QR코드

DOI QR Code

Environmental Factors on the Development of Root Rot on Ginseng Caused by Cylindrocarpon destructans

인삼 뿌리썩음병 발병에 미치는 환경 요인

  • Lee, Jung Sup (Apple Research Station, National Institute of Horticultural and Herbal Science) ;
  • Han, Kyung Sook (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science) ;
  • Lee, Seong Chan (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science) ;
  • Soh, Jae Woo (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science) ;
  • Kim, Doo Wook (Department of Horticultural Environment, National Institute of Horticultural and Herbal Science)
  • 이중섭 (국립원예특작과학원 사과시험장) ;
  • 한경숙 (국립원예특작과학원 원예특작환경과) ;
  • 이성찬 (국립원예특작과학원 원예특작환경과) ;
  • 소재우 (국립원예특작과학원 원예특작환경과) ;
  • 김두욱 (국립원예특작과학원 원예특작환경과)
  • Received : 2014.02.28
  • Accepted : 2014.05.28
  • Published : 2014.06.30

Abstract

The fungus Cylindrocarpon destructans is the cause of root rot in many ginseng production areas in Korea. A total of 57 isolates of C. destructans were recovered from diseased roots in a survey of ginseng-growing fields from 2011-2012. Among these isolates, 37% were classified as highly virulent (causing lesions on unwounded mature roots) and 61% were weakly virulent(causing lesions only on previously wounded roots). Radial growth of highly and weakly virulent isolates on potato dextrose agar was highest at $20^{\circ}C$ and there was no growth at $35^{\circ}C$. Mycelial mass production was significantly (P = 0.05) lower at pH 7.0 compared with pH 5.0. To study the effects of pH (5.0 and 7.0) and wounding on disease development, ginseng roots were grown hydroponically in nutrient solution. Lesions were significantly larger (P < 0.01) at pH 5.0 compared with pH 7.0 and wounding enhanced disease by a highly virulent isolate at both pHs. In artificially infested soil, 2-yearold ginseng roots were most susceptible to Cylindrocarpon root rot among all root ages tested (1 to 4 years) when evaluated using a combined scale of disease incidence and severity. Root rot severity was significantly (P<0.05) enhanced by increasing the inoculum density from $3.5{\times}10^2cfu/g$ of soil to $2.0{\times}10^3cfu/g$ of soil.

인삼 재배지에서 가장 큰 피해를 나타내고 있는 뿌리썩음병원균은 Cylindrocarpon destructans로 연작장해의 원인으로 작용하고 있다. 2011과 2012년에 걸쳐 인삼 뿌리썩음병 발병포장으로부터 뿌리를 수집하여 병징 구분 후 57종의 C. destructans를 분리하였다. 분리한 뿌리썩음병원균중에서 34균주(61%)는 병원성이 낮았으며, 21균주(37%)는 무상처 접종에서도 병반을 형성하여 강한 병원성을 나타내었다. 또한 이들 분리균들을 PDA 배지에서 15일 배양한 결과 최적의 생장온도는 $20^{\circ}C$였으며, $35^{\circ}C$에서는 병원성에 관계없이 모두 생장하지 못하였다. 병원성에 따라 균총의 색과 균사의 생장정도에 차이를 나타내었다. 강한 병원성 균주는짙은 갈색을 나타낸 반면 병원성이 약한 균주들은 베이지색 또는 옅은 갈색을 나타내었다. pH 변화에 따른 균사 생장에 미치는 효과 조사를 위해 수경 재배한 결과 pH 7.0에서 보다 pH 5.0에서 균사생장이 양호하였다. 뿌리에서의 상처는 pH 변화와 관계없이 발병도를 더욱 증가시켰다. 인위적으로 조성한 발병 토양에 1-4년생 인삼뿌리를 이식하여 재배한 결과 2년생 뿌리에서 가장 감수성이었으며, 발병률도 79.5%로 가장 높았다. 뿌리썩음병 발병정도는 토양 내 접종 병원균의 밀도에 따라 영향을 받는 것으로 나타났으며, 병원균 접종농도 $3.5{\times}10^2cfu/g$ 처리구 보다 $2.0{\times}10^3cfu/g$ 처리구에서 높았다.

Keywords

References

  1. Blank, C. A. and Murray, T. D. 1998. Influence of pH and matric potential on germination of Cephalosporium gramineum conidia. Plant Dis. 82: 975-978. https://doi.org/10.1094/PDIS.1998.82.9.975
  2. Cho, D. H., Yu, Y. H., Ohh, S. H. and Lee, H. S. 1996. Effect of incubation time, temperature and pH on the production of conidia and chlamydospores of Cylindrocarpon destructans(Zinssm.) Scholten causing root rot of Panax ginseng. Korean J. Ginseng Sci. 20: 88-95. (In Korean)
  3. Hankins, A. 2009. Producing and marketing wild simulated ginseng in forest and agroforestry systems. Virginia Cooperative Extension Publication. 312-354.
  4. Jang, Y. L., Kim, S. G. and Kim, Y. H. 2011. Biocontrol efficacies of Bacillus species against Cylindrocarpon destructans causing ginseng root rot. Plant Pathology J. 27: 333-341. https://doi.org/10.5423/PPJ.2011.27.4.333
  5. Kim, J. H., Jeon, Y. H., Park, H., Lee, B. D., Cho, D. H., Park, B. Y. and Kim, Y. H. 2006. The root-lesion nematode, Pratylenchus subpenetrans, on ginseng (Panax ginseng) in Korea. Nematology 8: 637-639. https://doi.org/10.1163/156854106778613949
  6. Kim, G. S., Hyun, D. Y., Kim, Y. O., Lee, S. E., Kwon, H., Cha, S. W., Park, C. B. and Kim, Y. B. 2010. Investigation of ginsenosides in different parts of Panax ginseng cultured by hydroponics. Korean J. Hort. Sci. Technol. 28: 216-226. (In Korean)
  7. Lee, S. G. 2004. Fusarium species associated with ginseng (Panax ginseng) and their role in the root rot of ginseng plant. Res. Plant Dis. 10: 248-259. (In Korean) https://doi.org/10.5423/RPD.2004.10.4.248
  8. Mahesh, P. P., Cornelia, H. S., Thomas, H. B. and Maurice, M. 2006. Vertical distribution of the plant-parasitic nematode, pratylenchus penetrans, under four field crops. Phytopathology 96: 226-233. https://doi.org/10.1094/PHYTO-96-0226
  9. Murray, T. D., Walter, C. C. and Anderegg, J. C. 1992. Control of cephalosporium stripe of wheat by liming. Plant Dis. 76: 282-286. https://doi.org/10.1094/PD-76-0282
  10. Punja, Z. K. 2006. Recent developments toward achieving fungal disease resistance in transgenic plants. Can. J. Plant Pathol. 28:298-308. https://doi.org/10.1080/07060660609507387
  11. Punja, Z. K., Wan, A., Goswami, R. S., Verma, N., Rahman, M., Barasubiye, T., Seifert, K. A. and Levesque, C. A. 2007. Diversity of Fusarium species associated with discolored ginseng roots in British Columbia. Can. J. Plant Pathol. 29: 340-353. https://doi.org/10.1080/07060660709507480
  12. Rahman, M. and Punja, Z. K. 2005. Factors influencing development of root rot on ginseng caused by Cylindrocarpon destructans. Phytopathology 95: 1381-1390. https://doi.org/10.1094/PHYTO-95-1381
  13. Reeleder, R. D., Roy, R. and Capell, B. B. 1999. Seed and root rots of ginseng (Panax quinquefolius) caused by Cylindrocarpon de structans and Fusarium spp.. J. Ginseng Res. 26: 151-158.
  14. Reeleder, R. D., Capell, B. B., Tomlinson, L. D. and Hickey, W. J. 2003. The extraction of fungal DNA from multiple large soil samples. Can. J. Plant Pathol. 25: 182-191. https://doi.org/10.1080/07060660309507067
  15. Sang, M. K., Chiang, M. H., Yi, E. S., Park, K. W. and Kim, K. D. 2006. Biocontrol of korean ginseng root rot caused by Phytophthora cactorum using antagonistic bacterial strains ISE13 and KJIR5. Plant Pathology J. 22: 103-106. https://doi.org/10.5423/PPJ.2006.22.1.103
  16. Seifert, K. A., McMullen, C. R., Yee, D., Reeleder, R. D. and Dobinson, K. F. 2003. Molecular differentiation and detection of ginsengadapted isolates of the root rot fungus Cylindrocarpon destructans. Phytopathology 93: 1533-1542. https://doi.org/10.1094/PHYTO.2003.93.12.1533
  17. Ziezold, M., Hall, R., Reeleder, R. D. and Proctor, J. T. A. 1998. Toxicity of fungicides in vitro to Cylindrocarpon destructans. J. Ginseng Res. 22: 223-228.

Cited by

  1. Effect of Culture Conditions on the Chemical Control Efficacy of Root Rot Disease of Platycodon grandiflorum and Codonopsis lanceolata vol.20, pp.2, 2016, https://doi.org/10.7585/kjps.2016.20.2.165
  2. Inhibition Effect on Root Rot Disease of Panax ginseng by Crop Cultivation in Soil Occurring Replant Failure vol.23, pp.3, 2015, https://doi.org/10.7783/KJMCS.2015.23.3.223
  3. Control of Soil-Borne Pathogens in Ginseng Cultivation through the Use of Cultured Green Manure Crop and Solarization in Greenhouse Facilities vol.24, pp.2, 2016, https://doi.org/10.7783/KJMCS.2016.24.2.136
  4. Powdery Mildew Caused by anErysiphesp. on Korean Ginseng vol.164, pp.5, 2016, https://doi.org/10.1111/jph.12419
  5. Diversity and antifungal activity of endophytic bacteria associated with Panax ginseng seedlings pp.1863-5474, 2018, https://doi.org/10.1007/s11816-018-0504-9