• 제목/요약/키워드: Roof-type solar module

검색결과 16건 처리시간 0.025초

지붕 설치형 결정질 실리콘 태양전지모듈의 온도 특성 (Roof-attached Crystalline Silicon Photovoltaic Module's Thermal Characteristics)

  • 김경수;강기환;유권종;윤순길
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.11-18
    • /
    • 2012
  • To expect accurately the maximum power of solar cell module under various installation conditions, it is required to know the performance characteristics like temperature dependence. Today, the PV (photovoltaic) market in Korea has been growing. Also BIPV (building integrated photovoltaic) systems are diversified and become popular. But thermal dependence of PV module is little known to customers and system installers. In IEC 61215,a regulation for testing the crystalline silicon solar cell module, the testing method is specified for modules. However there is limitation for testing the module with diverse application examples. In extreme installation method, there is no air flow between rear side of module and ambient, and it can induce temperature increase. In this paper, we studied the roof type installation of PV module on the surface of one-axis tracker system. We measured temperature on every component of PV module and compared to open-rack structure. As a result, we provide the foundation that explains temperature characteristics and NOCT (nominal operation cell temperature) difference. The detail description will be specified as the following paper.

건물 적용 유형별 공기식 BIPVT 유닛의 전기 및 열성능 비교에 관한 연구 (A Study on the Performance Comparisons of Air Type BIPVT Collector Applied on Roofs and Facades)

  • 강준구;김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.56-62
    • /
    • 2010
  • The integration of PV modules into building facades or roof could raise their temperature that results in the reduction of PV system's electrical power generation. Hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. PV/thermal collectors, or more generally known as PVT collectors, are devices that operate simultaneously to convert solar energy from the sun into two other useful energies, namely, electricity and heat. This paper compares the experimental performance of BIPVT((Building-Integrated Photovoltaic Thermal) collectors that applied on building roof and facade. There are four different cases: a roof-integrated PVT type and a facade-integrated PVT type, the base models with an air gap between the PV module and the surface, and the improved models for each types with aluminum fins attached to the PV modules. The accumulated thermal energy of the roof-integrated type was 15.8% higher than the facade-integrated regardless of fin attachment. The accumulated electrical energy of the roof-integrated type was 7.6% higher, compared to that of the facade-integrated. The efficiency differences among the collectors may be due to the fact that the pins absorbed heat from the PV module and emitted it to air layer.

한국 산업용 건물지붕 적용 PV에 의한 발전량 및 CO2 분석연구 (A Study on Electric Capacity and CO2 by the Roof Top PV System of the Industrial Building in Korea)

  • 김지수;이응직;황정하
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.131-136
    • /
    • 2010
  • The purpose of this study is to provide foundational data for expansion of solar generation in building application, a clean energy, by introducing applicability of solar power generation system on roofs of industrial buildings and computing expected amounts of power and carbon dioxides reduction. As methodologies of this study, after reviewing 120,000 domestic factories to verify the BIPV feasibility for industrial building sthrough theoretical considerations of solar generation system, we calculated BIPV application methods and subsequent expected power generation quantity and carbon dioxide reductions through roof type analysis. we analyzed four cases of expected power generation amounts of solar batteries according to application methods, and when considering that the main type of roofs are slant roofs according to the investigation result about roof forms of domestic industrial complexes, we believe that the module angle of a slant roof around $17^{\circ}$(case3) is most suitable for the application. Finally, we came up with 517,944[TOE] as the corresponding petroleum tonnage based on this computed expected power generation amount and the amount of 1,214,836[$tCO_2$] carbon dioxide reductions by calculating them by energy sources.

BIPV를 활용한 건축물 디자인 계획에 관한 연구 (A Study on the Architectural Design Plans Using BIPV)

  • 전근식;류수훈
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권3호
    • /
    • pp.5-13
    • /
    • 2012
  • In this study, features and design effects of PV(Photovoltaic) modules were classified to help the installation of BIPV(Building Integrated Photovoltaic) In addition, through domestic and international trends and cases survey, installation method was organized and applicable range of efficiency and design from First-generation solar cells to the third-generation solar cell was classified. Frist, Crystalline Solar cell module of first-generation is appropriate for the wall type, roof, louver, shading and etc. It has superiority of technology and price stability and can be achieved by a variety of aesthetic effects. Second, Dye-Sensitized Solar Cell of Thin Film solar cell can express a variety of colors, adjust light transmittance and maximize the aesthetic splendor. It is appropriate for the wall type, window type, curtain wall type and etc. Also, see-through type solar cell can provide comforts cause of free flow of light. And it is advantageous from economic due to adjust the indoor temperature. It is appropriate for the atrium type, curtain wall type, window type and etc.

절곡 강판 일체형 고출력 슁글드 태양광 모듈 제조 (Fabrication of High-power Shingled PV Modules Integrated with Bent Steel Plates for the Roof)

  • 이은비;박민준;김민섭;신진호;윤성민
    • Current Photovoltaic Research
    • /
    • 제11권2호
    • /
    • pp.54-57
    • /
    • 2023
  • Recently, requirements for improving the convenience of constructing BIPV (Building Integrated Photo Voltaic) modules had increased. To solve this problem, we fabricated shingled PV modules integrated with bent steel plates for building integrated photovoltaics. These PV modules could be constructed directly on the roof without the installation structure. We found optimal lamination conditions with supporting structures to fabricate a module on a bent steel plate. Moreover, we applied a shingled design to PV modules integrated with bent steel plates to achieve a high electrical output power. The shingled module with bent steel plates shows 142.80 W of solar-to-power conversion in 0.785 m2 area.

BIPV 시스템에서의 모듈 종류에 따른 건축적 특성 연구 - 채광형 시스템을 중심으로 - (A Study of the Architectural Characteristic Depending upon the Module in the BIPV System)

  • 이응직;이충식
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.196-202
    • /
    • 2008
  • Effective climate protection is a most important tasks of our time. The BIPV is one of the most interesting and promisingly possibilities of an active use of solar energy at the building. In this study it was analyzed by the case study the function of the requirement of the BIPV-module as building material and this architectural characteristic according to the kind of the module. Therefore the goal of this study is to get securing the application information of BIPV as windowpane. BIPV modules are manufactured in the form of G/G. In the case of the crystal type the Transparent and the light Transmission is to be adjusted by the spacer attitude of the cell. Although this type could not be optimal for light effect of indoors because of the inequality of shade, the moving shade play makes a dramatic Roomimage by the run of sun. The application of this type would be for canopy, window or roof in the corridor or resounds. With amorphous the type it is to be manufactured simply largely laminar, and thus that will shorten building process. There is a relatively good economy to use and to the window system easily. After the production technology is easy the transparency of the modules to adjust, and the module shows to a high degree constant characteristics of light permeability and transparency. Without mottle of module shade is good the use for the window or roof glazing of office, library, classroom, etc. to adapt. The BIPV modules took generally speaking a function as building material to the daylight use, shading, isolation and also to the sight. That means that BIPV modules have as multifunctional system to sustainable architecture good successes and they are at the same time as Design element for architecture effectively.

  • PDF

액체식 PV/Thermal 복합모듈의 성능실험연구 (An Experimental Study of a Water Type PV/Thermal Combined Collector Unit)

  • 이현주;김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.105-111
    • /
    • 2007
  • Hybrid PV/Thermal systems consisting of photovoltaic module and thermal collector can produce the electricity and thermal energy. The solar radiation increases the temperature of PV modules, resulting in the decrease of their electrical efficiency. Accordingly hot air can be extracted from the space between the PV panel and roof, so the efficiency of the PV module increases. The extracted thermal energy can be used in several ways, increasing the total energy output of the system. This study describes a basic type of PV/T collector using water. In order to analyze the performance of the collector, the experiment was conducted. The result showed that the thermal efficiency was 17% average and the electrical efficiency of the PV module was about $10.2%{\sim}11.5%$, both depending on solar radiation, inlet water temperature and ambient temperature.

주택 지붕일체형 PV시스템 후면환기에 따른 발전성능 변화 실험연구 (Experimental Study on the Combined Effect of Power and Heat according to the Ventilation of Back Side in Roof Integrated PV System)

  • 윤종호;한규복;안영섭
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.169-174
    • /
    • 2007
  • Building integrated photovoltaic(BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated. This study is to establish basic Information for designing effective BIPV by discovering relations between temperature and generation capability through experiment when the PV module is used as roof material for houses. To do so, we established 3kW full scale mock-up model with real size house and attached an PV array by cutting in half. This is to assess temperature influence depending on whether there is a ventilation on the rear side of PV module or not.

지붕재 일체형 태양전지 모듈의 개발에 따른 내구성 평가 (조립식 건축시스템을 중심으로) (A Study on the Development of Roof Integrated PV Module (Focused on the Prefab Building System))

  • 이소미;노지희;이응직
    • KIEAE Journal
    • /
    • 제6권4호
    • /
    • pp.17-24
    • /
    • 2006
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are solid state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. And the prefab building method is very effective because the pre- manufactured building components is simply assembled to making up buildings in the construction fields especially the sandwich panel. Architecture considerations for the integration of PV module to building envelope such as building structure, construction type, safety, regulation, maintenance etc. have been carefully refelected from the early stage of BIPV module design. Trial product of BIPV module are manufactured and sample construction details for demonstration building are purposed. Therefore, this paper intends to advanced its practical use by proposing how to get integrated PV system which can be applied to prefab building material, and how to apply it.

사례분석에 의한 강구조 스타디움 레일 시스템 분류 (Classification of Rail System in Steel Structure Stadiums by Case Study)

  • 김혜성;윤성원
    • 한국공간구조학회논문집
    • /
    • 제10권1호
    • /
    • pp.67-74
    • /
    • 2010
  • 국내에 설치될 강구조 스타디움에 향후 신재생에너지 중 하나인 태양광 발전을 위한 PV 시스템을 적용하는 것에 따른 강재 어레이에 관한 기초 연구로 해외의 사례를 토대로 구성되었다. 연구를 진행하기 위하여 1990년대 이후 PV 시스템이 적용된 강구조 스타디움 20건을 사례 분석 대상으로 선정하였다. 선정된 20건의 강구조 스타디움을 PV 모듈을 고정하기 위하여 설치된 레일 시스템에 따라 분류해 보았다. 그 결과 격자고정방식 중 선형모듈고정방식과 지붕 통합형이 전체의 28%에 해당되는 것으로 조사되었으며 그 뒤로 레일 고정형 17%, 세로 고정방식 중 모듈그룹 고정 11% 순으로 조사되었다. 또한 스타디움 내부에는 주로 격자 고정방식 중 선형모듈 고정방식과 지붕통합형이 적용되고 있었으며 스타디움 외부나 그 외 부분에서는 앵글 브라킷으로 PV 모듈이 고정되고 있는 것으로 조사되었다.

  • PDF