• Title/Summary/Keyword: Roman k-dominating function

Search Result 4, Processing Time 0.016 seconds

ROMAN k-DOMINATION IN GRAPHS

  • Kammerling, Karsten;Volkmann, Lutz
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1309-1318
    • /
    • 2009
  • Let k be a positive integer, and let G be a simple graph with vertex set V (G). A Roman k-dominating function on G is a function f : V (G) $\rightarrow$ {0, 1, 2} such that every vertex u for which f(u) = 0 is adjacent to at least k vertices $\upsilon_1,\;\upsilon_2,\;{\ldots},\;\upsilon_k$ with $f(\upsilon_i)$ = 2 for i = 1, 2, $\ldot$, k. The weight of a Roman k-dominating function is the value f(V (G)) = $\sum_{u{\in}v(G)}$ f(u). The minimum weight of a Roman k-dominating function on a graph G is called the Roman k-domination number ${\gamma}_{kR}$(G) of G. Note that the Roman 1-domination number $\gamma_{1R}$(G) is the usual Roman domination number $\gamma_R$(G). In this paper, we investigate the properties of the Roman k-domination number. Some of our results extend these one given by Cockayne, Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi [2] in 2004 for the Roman domination number.

Complexity Issues of Perfect Roman Domination in Graphs

  • Chakradhar, Padamutham;Reddy, Palagiri Venkata Subba
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.661-669
    • /
    • 2021
  • For a simple, undirected graph G = (V, E), a perfect Roman dominating function (PRDF) f : V → {0, 1, 2} has the property that, every vertex u with f(u) = 0 is adjacent to exactly one vertex v for which f(v) = 2. The weight of a PRDF is the sum f(V) = ∑v∈V f(v). The minimum weight of a PRDF is called the perfect Roman domination number, denoted by γRP(G). Given a graph G and a positive integer k, the PRDF problem is to check whether G has a perfect Roman dominating function of weight at most k. In this paper, we first investigate the complexity of PRDF problem for some subclasses of bipartite graphs namely, star convex bipartite graphs and comb convex bipartite graphs. Then we show that PRDF problem is linear time solvable for bounded tree-width graphs, chain graphs and threshold graphs, a subclass of split graphs.

A CORRECTION TO A PAPER ON ROMAN κ-DOMINATION IN GRAPHS

  • Mojdeh, Doost Ali;Moghaddam, Seyed Mehdi Hosseini
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.469-473
    • /
    • 2013
  • Let G = (V, E) be a graph and k be a positive integer. A $k$-dominating set of G is a subset $S{\subseteq}V$ such that each vertex in $V{\backslash}S$ has at least $k$ neighbors in S. A Roman $k$-dominating function on G is a function $f$ : V ${\rightarrow}$ {0, 1, 2} such that every vertex ${\upsilon}$ with $f({\upsilon})$ = 0 is adjacent to at least $k$ vertices ${\upsilon}_1$, ${\upsilon}_2$, ${\ldots}$, ${\upsilon}_k$ with $f({\upsilon}_i)$ = 2 for $i$ = 1, 2, ${\ldots}$, $k$. In the paper titled "Roman $k$-domination in graphs" (J. Korean Math. Soc. 46 (2009), no. 6, 1309-1318) K. Kammerling and L. Volkmann showed that for any graph G with $n$ vertices, ${{\gamma}_{kR}}(G)+{{\gamma}_{kR}(\bar{G})}{\geq}$ min $\{2n,4k+1\}$, and the equality holds if and only if $n{\leq}2k$ or $k{\geq}2$ and $n=2k+1$ or $k=1$ and G or $\bar{G}$ has a vertex of degree $n$ - 1 and its complement has a vertex of degree $n$ - 2. In this paper we find a counterexample of Kammerling and Volkmann's result and then give a correction to the result.

Strong Roman Domination in Grid Graphs

  • Chen, Xue-Gang;Sohn, Moo Young
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.515-523
    • /
    • 2019
  • Consider a graph G of order n and maximum degree ${\Delta}$. Let $f:V(G){\rightarrow}\{0,1,{\cdots},{\lceil}{\frac{{\Delta}}{2}}{\rceil}+1\}$ be a function that labels the vertices of G. Let $B_0=\{v{\in}V(G):f(v)=0\}$. The function f is a strong Roman dominating function for G if every $v{\in}B_0$ has a neighbor w such that $f(w){\geq}1+{\lceil}{\frac{1}{2}}{\mid}N(w){\cap}B_0{\mid}{\rceil}$. In this paper, we study the bounds on strong Roman domination numbers of the Cartesian product $P_m{\square}P_k$ of paths $P_m$ and paths $P_k$. We compute the exact values for the strong Roman domination number of the Cartesian product $P_2{\square}P_k$ and $P_3{\square}P_k$. We also show that the strong Roman domination number of the Cartesian product $P_4{\square}P_k$ is between ${\lceil}{\frac{1}{3}}(8k-{\lfloor}{\frac{k}{8}}{\rfloor}+1){\rceil}$ and ${\lceil}{\frac{8k}{3}}{\rceil}$ for $k{\geq}8$, and that both bounds are sharp bounds.